Cho tam giác ABC góc A = 90 độ,AB=8cm;AC=15cm;BC=17cm
Gọi I là giao điểm của 3 tia phân giác của tam giác ABC.Tính khoảng cách từ điểm I đến các cạnh của tam giác
Nhanh nhé
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
cho tam giác abc (góc a=90 độ) tia phân giác cua góc abc cắt ac tại i trên cạch bc lấy điểm d sao cho ab=bd gọi giao điiểm của 2 tia di và ab là e cmr
a)di vuông góc với bc
b)tam giác bce là tam giác cân
c)tính góc abc bt ec=2ad
d) cho ab=8cm bc=10cm tính ac
a) Xét \(\Delta ABI\) và \(\Delta DBI:\)
AB = DB (gt).
\(\widehat{ABI}=\widehat{DBI}\) (BI là phân giác \(\widehat{ABC}).\)
BI chung.
\(\Rightarrow\Delta ABI=\Delta DBI\left(c-g-c\right).\\ \Rightarrow\widehat{BAI}=\widehat{BDI}=90^o.\\ \Rightarrow DI\perp BC.\)
b) Xét \(\Delta BCE:\)
ED là đường cao \(\left(ED\perp BC\right).\)
CA là đường cao \(\left(CA\perp AB\right).\)
I là giao điểm của ED và CA.
\(\Rightarrow\) I là trực tâm.
\(\Rightarrow\) BI là đường cao.
Xét \(\Delta BCE:\)
BI là đường cao (cmt).
BI là phân giác (gt).
\(\Rightarrow\) \(\Delta BCE\) cân tại B.
d) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow10^2=8^2+AC^2.\\ \Leftrightarrow AC=6\left(cm\right).\)
cho tam giác abc, góc A=90°, góc B =60°, AB=8cm a) tính góc C, cạnh Ac và BC b) tính diện tích tam giác ABC
Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)
\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)
cho tam giác abc có a=90 độ cạnh ab=6 ac=8cm a) tính cạnh bc , góc b và góc c .b) vẽ tia phân giác góc a cắt bc tại d tính bd và dc
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
=>\(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq37^0\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)
=>\(DB=\dfrac{30}{7}\left(cm\right);DC=\dfrac{40}{7}\left(cm\right)\)
cho tam giác ABC nội tiếp đường tròn O ; đường kính AB. Biết góc A=90 độ; AC= 8cm. Tính S???
Cho tam giác ABC;góc A=90 độ;AB=8cm;AC=15cm.
a)Tính BC.
b)Gọi I là giao điểm các tia phân giác của tam giác ABC.Tính khoảng cách từ điểm I đến các cạnh của tam giác.
a- Áp dụng định lí pitago vào tam giác ABC vuông tại A .
\(BC=\sqrt{AB^2+AC^2}=17\left(cm\right)\)
b, Ta có khoảng các từ I đến các cạnh là như nhau .
Mà \(S=\dfrac{1}{2}AB.AC=d_{\left(I,AB\right)}.p=60=d_{\left(I,AB\right)}.20\)
=> Khoảng cách từ I đến các cạnh là : \(\dfrac{60}{20}=3\left(cm\right)\)
cho tam giác ABC có góc A bằng 90 độ đường cao AH,AB=6cm,AC=8cm a) chứng minh tam giác ABC đồng dạng tam giác CAB b)Tính BC,AH c) kẻ HD vuông AB D thuộc AB , HE vuông AC E thuộc AC chúng minh tam giác AED đồng dạng với tam giác ABC
CÁC BN ƠI GIÚP MK VS CHO MK LM ĐCUONG CÁC BN ƠI LM ỚN GIÚP MK VS\
CHO MK LỜI GIẢI CHI TIẾT VÀ HÌNH VẼ NỮA
LM ƠN GIÚP MK VS
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Suy ra: BH/BA=BA/BC
hay \(BA^2=BH\cdot BC\)
b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HF là đường cao
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
hay AF/AC=AE/AB
Xét ΔAFE vuông tại A và ΔACB vuông tại A có
AF/AC=AE/AB
Do đó:ΔAFE\(\sim\)ΔACB
Bài 1:
Cho tam giác ABC, góc A=90 độ
a) AB=12cm, AC=15cm. Tính BC
b) AB=7cm, BC=11cm. Tính AC
Bài 2:
Tam giác có độ dài ba cạnh như sau có là tam giác vuông không
a) 17cm, 8cm, 15cm
b) 5dm, 7dm, 9dm
Bài 2:
a: Đây là tam giác vuông
b: Đây ko là tam giác vuông