cho tam giác ABC có góc A bằng 90 độ đường cao AH,AB=6cm,AC=8cm a) chứng minh tam giác ABC đồng dạng tam giác CAB b)Tính BC,AH c) kẻ HD vuông AB D thuộc AB , HE vuông AC E thuộc AC chúng minh tam giác AED đồng dạng với tam giác ABC
CÁC BN ƠI GIÚP MK VS CHO MK LM ĐCUONG CÁC BN ƠI LM ỚN GIÚP MK VS\
CHO MK LỜI GIẢI CHI TIẾT VÀ HÌNH VẼ NỮA
LM ƠN GIÚP MK VS
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Suy ra: BH/BA=BA/BC
hay \(BA^2=BH\cdot BC\)
b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HF là đường cao
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
hay AF/AC=AE/AB
Xét ΔAFE vuông tại A và ΔACB vuông tại A có
AF/AC=AE/AB
Do đó:ΔAFE\(\sim\)ΔACB