Cho hình thang vuông ABCD (AB // CD) có \(\widehat{A}=\widehat{D}=90^0,\widehat{B}=60^0,CD=30cm,CA\perp CB\) . Tính diện tích của hình thang ABCD.
Hình thang ABCD có \(\widehat{D}=\widehat{A}=90^0\); AB = 30cm; CD = 18cm; BC = 20cm
a. Tính \(\widehat{ABC};\widehat{BCD}\)
b. Tính \(\widehat{DAC};\widehat{ADB}\)
c. Tính BD, AC
Trong hình thang vuông ABCD với các đáy là AD, BC có \(\widehat{A}=\widehat{B}=90^0;\widehat{ACD}=90^0;BC=4cm;AD=16cm\). Hãy tìm các góc C và D của hình thang ?
Cho hình thang ABCD có \(\widehat{A}=\widehat{B}=90^o\). AB=10cm, CD=30cm, AD=35cm. Trên cạnh AD lấy M sao AM=15cm. CM:
a, \(\Delta ABM\) đồng dạng \(\Delta DMC\)
b, \(\widehat{BMC}=90^o\)
Hình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90^0;AB=AD=2cm;DC=4cm\)
Tính các góc của hình thang ?
Kẻ BH ⊥ CD
Ta có: AD ⊥ CD (gt)
Suy ra: BH // AD
Hình thang ABHG có hai cạnh bên song song nên HD = AB và BH = AD
AB = AD = 2cm (gt)
⇒ BH = HD = 2cm
CH = CD – HD = 4 – 2 = 2 (cm)
Suy ra: ΔBHC vuông cân tại H ⇒ \(\widehat{C}=45^0\)
\(\widehat{B}+\widehat{C}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{B}=180^0-45^0=135^0\)
cho hình thang vuông ABCD\(\left(\widehat{A}=\widehat{D}=90^0\right)\)có đáy nhỏ AB=5cm, đáy lớn CD =9cm; góc tạo bởi đáy lớn và cạnh bên là 45o. Tính chu chu vi hình thang vuông ABCD
Kẻ \(BH\perp CD\)
Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)
Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)
\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)
\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)
Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)
Chu vi hình thang vuông ABCD là:
\(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)
Chúc bạn học tốt.
Hình thang ABCD (AB // CD) có \(\widehat{A}-\widehat{D}=20^0,\widehat{B}=2\widehat{C}\). Tính các góc của hình thang ?
Bài giải:
Ta có 200; 1800
Từ 200
=> = 200 +
Nên 200 + +=200 +2 =1800
=> 2=1600 => = 800
Thay = 800 vào = 200 + ta được =200 + 800 = 1000
Lại có ; 1800
nên
Ta có :AB//CD\(\Rightarrow\widehat{A}+\widehat{D}=180^o\) (do 2 góc ở vị trí trong cùng phía )
Từ \(\widehat{A}-\widehat{D}=20^o\Rightarrow\widehat{A}=20^o+\widehat{D}\) \(^{\left(1\right)}\)
Nên \(\widehat{A}+\widehat{D}=20^o+\widehat{D}+\widehat{D}=20^o+2.\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}=160^o\Rightarrow\widehat{D}=80^o\)
Thay \(\widehat{D}=80^o\) vào \(^{\left(1\right)}\) , ta được:
\(\widehat{A}=20^o+80^o=100^o\)
Lại có:\(\widehat{B}+\widehat{C}=180^o\) (do 2 góc ở vị trí trong cùng phía )
và \(\widehat{B}=2.\widehat{C}\)
nên \(2.\widehat{C}+\widehat{C}=180^o\) hay \(3.\widehat{C}=180^o\Rightarrow\widehat{C}=60^o\)
Do đó: \(\widehat{B}=2.\widehat{C}=2.60^o=120^o\)
Vậy \(\widehat{A}=100^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=80^o\)
Ta có :AB//CD⇒ˆA+ˆD=180o⇒A^+D^=180o (do 2 góc ở vị trí trong cùng phía )
Từ ˆA−ˆD=20o⇒ˆA=20o+ˆDA^−D^=20o⇒A^=20o+D^ (1)(1)
Nên ˆA+ˆD=20o+ˆD+ˆD=20o+2.ˆD=180oA^+D^=20o+D^+D^=20o+2.D^=180o
⇒2ˆD=160o⇒ˆD=80o⇒2D^=160o⇒D^=80o
Thay ˆD=80oD^=80o vào (1)(1) , ta được:
ˆA=20o+80o=100oA^=20o+80o=100o
Lại có:ˆB+ˆC=180oB^+C^=180o (do 2 góc ở vị trí trong cùng phía )
và ˆB=2.ˆCB^=2.C^
nên 2.ˆC+ˆC=180o2.C^+C^=180o hay 3.ˆC=180o⇒ˆC=60o3.C^=180o⇒C^=60o
Do đó: ˆB=2.ˆC=2.60o=120oB^=2.C^=2.60o=120o
Vậy ˆA=100o;ˆB=120o;ˆC=60o;ˆD=80o
Hình thang ABCD có \(\widehat{A}=\widehat{D}=90^0\), đáy nhỏ AB = 11cm, AD = 12cm, BC = 13. Tính độ dài AC
Cho hình thang vuông ABCD \(\left(\widehat{A}=\widehat{D}=90^0\right)\) , \(\widehat{C}=55^0\) , biết AB = 10cm, AD = 60cm. Tính CD.
Cho hình thang ABCD (AB//CD), tia phân giác của \(\widehat{C}\) đi qua trung điểm M của cạnh bên AD. Chứng minh rằng: a) \(\widehat{BMC}=90^0\) b) BC=AB+CD