Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng-thiều
Xem chi tiết

\(\Leftrightarrow36x-20=4y^2-4y\)

\(\Leftrightarrow18\left(2x-1\right)=\left(2y-1\right)^2+1\)

Vế trái chia hết cho 3, vế phải chia 3 luôn dư 1 hoặc 2

Vậy không tồn tại cặp số nguyên x, y thỏa mãn

 

Lê Song Phương
8 tháng 1 lúc 18:23

 Vì  \(9x-5\equiv4\left[9\right]\) nên \(y\left(y-1\right)=y^2-y\equiv4\left[9\right]\) hay \(y^2-y-4⋮9\) 

\(\Leftrightarrow y^2-5y+4y-20+16⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y+4\right)+16⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y+4\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y-5+9\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)^2+9\left(y-5\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)^2-2⋮9\)

\(\Rightarrow\left(y-5\right)^2-2⋮3\) hay \(\left(y-5\right)^2\equiv2\left(mod3\right)\)

 Điều này là vô lí vì số chính phương khi chia cho 3 không thể có số dư là 2. 

 Vậy pt đã cho không có nghiệm nguyên.

 

 

 

 

mình đổi tên nick này cò...
Xem chi tiết
Nguyệt Hà
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 10 2019 lúc 21:03

Giả sử \(x\ge y\ge z>0\)

\(\Rightarrow2\left(x+y+z\right)\le6x\Rightarrow xyz\le6x\Rightarrow yz\le6\Rightarrow\left(y;z\right)=\left(3;2\right)=\left(1;1\right)=\left(3;1\right);\left(4;1\right)=\left(2;1\right)=\left(6;1\right)\) Vì \(y\ge z\)

Chị làm nốt ạ.

Trần Đức Thắng
Xem chi tiết
mokona
13 tháng 1 2016 lúc 21:44

em cũng mới học lớp 6 thui

Nguyễn Tiến Đạt
13 tháng 1 2016 lúc 21:46

x = 1 thì y = 0

Uzumaki Naruto
13 tháng 1 2016 lúc 21:48

Em mới học lớp 6 thôi à

NGUUYỄN NGỌC MINH
Xem chi tiết
Mr Lazy
16 tháng 7 2015 lúc 9:59

Do tổng x4+y4 là một số lẻ nên x, y là 2 số khác tính chẵn - lẻ. Giả sử x là số chẵn, y là số lẻ. x = 2a và y = 2b+1.

\(x^4+y^4=\left(2a\right)^4+\left(2b+1\right)^4=16a^4+16b^4+32b^3+24b^2+8b+1\)

\(=8\left(2a^4+2b^4+4b^3+3b^3+b\right)+1\)

=> x4 + y4 chia 8 dư 1.

Mà 1995 chia 8 dư 3.

=> Không tồn tại các số nguyên a, b.

=> không tồn tại các số nguyên x, y.

Nguyen Tuan Dung
Xem chi tiết
alibaba nguyễn
25 tháng 9 2018 lúc 8:56

\(x^4+x^2+2=y^2-y\)

\(\Leftrightarrow\left(y-x^2-1\right)\left(y+x^2\right)=2\)

๖ۣۜØʑąωą кเşşッ
Xem chi tiết
#Love_Anh_Best#
18 tháng 3 2019 lúc 21:07

http://lovelove.xtreemhost.com/nguhaykhong.html?i=1

TÊN HỌ VÀ
Xem chi tiết

\(Đặt:t=x^2\left(t>0\right)\\ t^2-3t-4=0\\ \Leftrightarrow t^2+t-4t-4=0\\ \Leftrightarrow t\left(t+1\right)-4\left(t+1\right)=0\\ \Leftrightarrow\left(t-4\right)\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t-4=0\\t+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(loại\right)\end{matrix}\right.\\ Với:t=4\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\\ Vậy:S=\left\{\pm2\right\}\)

Phương trình có 2 nghiệm

Chọn A

Nguyễn Duy Vũ
Xem chi tiết
Thuận Quốc
28 tháng 4 2016 lúc 14:35

5x-3y=2xy-11
10x-6y=4xy-22
(10x-4xy) +( 15-6y)=-7
2x(5-2y) +3(5-2y) =-7
(5-2y)(2x+3) =-7
Do x nguyên dương 2x+3 5 và là ước của 7 nên ta có:
*
Vậy nghiệm nguyên dương của phương trình là : (2;3)

1st_Parkour
28 tháng 4 2016 lúc 15:13

Lời giải của mình như sau:

5x-3y=2xy-11

10x-6y=4xy-22

(10x-4xy) +( 15-6y)=-7

2x(5-2y) +3(5-2y) =-7

(5-2y)(2x+3) =-7

Vì x nguyên dương 2x+3 5 và là ước của 7 

=> nghiệm nguyên dương của phương trình là : (2;3)

Vậy nghiệm nguyên dương của phương trình là : (2;3)

le thi thu huyen
28 tháng 4 2016 lúc 15:32

34x27s

76sx24