số ngiệm nguyên của pt;6x3 +5x2=7
tìm ngiệm nguyên dương của pt 9x-5=y(y-1)
\(\Leftrightarrow36x-20=4y^2-4y\)
\(\Leftrightarrow18\left(2x-1\right)=\left(2y-1\right)^2+1\)
Vế trái chia hết cho 3, vế phải chia 3 luôn dư 1 hoặc 2
Vậy không tồn tại cặp số nguyên x, y thỏa mãn
Vì \(9x-5\equiv4\left[9\right]\) nên \(y\left(y-1\right)=y^2-y\equiv4\left[9\right]\) hay \(y^2-y-4⋮9\)
\(\Leftrightarrow y^2-5y+4y-20+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y-5+9\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2+9\left(y-5\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2-2⋮9\)
\(\Rightarrow\left(y-5\right)^2-2⋮3\) hay \(\left(y-5\right)^2\equiv2\left(mod3\right)\)
Điều này là vô lí vì số chính phương khi chia cho 3 không thể có số dư là 2.
Vậy pt đã cho không có nghiệm nguyên.
tìm ngiệm nguyên dương của pt :
5x-3y=2xy-11
tìm ngiệm nguyên dương của pt \(xyz=2\left(x+y+z\right)\)
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow2\left(x+y+z\right)\le6x\Rightarrow xyz\le6x\Rightarrow yz\le6\Rightarrow\left(y;z\right)=\left(3;2\right)=\left(1;1\right)=\left(3;1\right);\left(4;1\right)=\left(2;1\right)=\left(6;1\right)\) Vì \(y\ge z\)
Chị làm nốt ạ.
TÌm ngiệm nguyên của pt :
\(2^x-3^y=1\)
giải phương trình ngiệm nguyên x,y thỏa x4+y4 = 1995 (pt này vô ngiệm mà mình ko bk cách giải)
Do tổng x4+y4 là một số lẻ nên x, y là 2 số khác tính chẵn - lẻ. Giả sử x là số chẵn, y là số lẻ. x = 2a và y = 2b+1.
\(x^4+y^4=\left(2a\right)^4+\left(2b+1\right)^4=16a^4+16b^4+32b^3+24b^2+8b+1\)
\(=8\left(2a^4+2b^4+4b^3+3b^3+b\right)+1\)
=> x4 + y4 chia 8 dư 1.
Mà 1995 chia 8 dư 3.
=> Không tồn tại các số nguyên a, b.
=> không tồn tại các số nguyên x, y.
giải pt ngiệm nguyên
x4+x2+2=y2-y
\(x^4+x^2+2=y^2-y\)
\(\Leftrightarrow\left(y-x^2-1\right)\left(y+x^2\right)=2\)
tìm ngiệm nguyên của các pt sau
a,12x-7y=45
b,3x-y=13
c,23x+53y=109
d,12x-5y=21
http://lovelove.xtreemhost.com/nguhaykhong.html?i=1
số ngiệm của pt \(x^4-3x^2-4=0\) là
A.2 B.3 C.4 D.1
\(Đặt:t=x^2\left(t>0\right)\\ t^2-3t-4=0\\ \Leftrightarrow t^2+t-4t-4=0\\ \Leftrightarrow t\left(t+1\right)-4\left(t+1\right)=0\\ \Leftrightarrow\left(t-4\right)\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t-4=0\\t+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(loại\right)\end{matrix}\right.\\ Với:t=4\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\\ Vậy:S=\left\{\pm2\right\}\)
Phương trình có 2 nghiệm
Chọn A
tìm ngiệm nguyên dương của pt :
5x-3y=2xy-11
5x-3y=2xy-11
10x-6y=4xy-22
(10x-4xy) +( 15-6y)=-7
2x(5-2y) +3(5-2y) =-7
(5-2y)(2x+3) =-7
Do x nguyên dương 2x+3 5 và là ước của 7 nên ta có:
*
Vậy nghiệm nguyên dương của phương trình là : (2;3)
Lời giải của mình như sau:
5x-3y=2xy-11
10x-6y=4xy-22
(10x-4xy) +( 15-6y)=-7
2x(5-2y) +3(5-2y) =-7
(5-2y)(2x+3) =-7
Vì x nguyên dương 2x+3 5 và là ước của 7
=> nghiệm nguyên dương của phương trình là : (2;3)
Vậy nghiệm nguyên dương của phương trình là : (2;3)