Cho \(\Delta\)ABC có đường cao ha , hb ,hc tỉ lệ thuận với ba số 4;5;6 và chu vi tam giác ABC =37 . Khi đó độ dài cạnh nhỏ nhất của \(\Delta\)ABC là
Ba cạnh a,b,c của tỉ lệ thuận với 4,5,6. Ba đường cao tương ứng là ha , hb , hc và 2ha+3hb-4hc=52cm . Tính đọ dài các đường cao biết độ dài các cạnh tỉ lệ nghịch với độ dài các đường cao tương ứng.
tam giác ABC có 3 cạnh BC=a;CA=b;AB=c, độ dài 3 đường cao ứng với ba cạnh ha,hb,hc; (hb+hc):(hb+hc):(hc+ha)=5:7:8.Tìm tỉ lệ a:b:c
trả lời nhanh nha
TAM GIÁC ABC CÓ 3 CẠNH LÀ A, B, C VÀ 3 ĐƯỜNG CAO TƯƠNG ỨNG LÀ Ha,Hb,Hc
(Ha+Hb):(Hb+Hc):(Hc+Ha)=5:7:8
HỎI A,B,C LẦN LƯỢT TỈ LỆ VỚI 3 SỐ NÀO??
Cho tam giác có 3 cạnh là a,b,c. Các đường cao tương ứng là ha, hb, hc. Biết ha+hb, hb+hc, hc+ha tỉ lệ với 5,6,7. Tính a,b,c biết a+b+c = 62cm
cho một tam giác có đường cao ha;hb;hc tỉ lệ thuận với ba số 4;5;6. Chu vi của tam giác đó là 37 cm. Độ dài cạnh nhỏ nhất của tam giác đó là
Gọi độ dai 3 cạnh là a, b, c.
Theo đề bài, ta có:
a\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
gọi ba cạnh của tam giác làa;b;ccm(a;b;c>0)
thèo bài ra có chu vi tam giác là 37cm
=>a+b+c=37(1)
:ba đường cao tỉ lệ với 4;5;6
=>ha/4=hb/5=hc/6
đặt ha/4=hb/5=hc/6=k
=>ha=4k
hb=5k
hc=6k
có diện tích tam giác =ha.a=hb.b=hc.c
thay k vào ct:4k.a=5k.b=6k.c
<=>4a=5b=6c
<=>4a/60=5b/60=6c/60
<=>a/15=b/12=c/10(2)
từ 1,2
áp dụng t/c DTSBN
a/15=b/12=c/10=a+b+c/15+12+10=37/37=1
suy ra:a=15;b=12;c=10(tmđk)
vậy độ dài cạnh nhỏ nhất là 10cm
Câu 1: Cho tam giác ABC vuông tại A, có đường cao AH.
a) Chứng minh \(\Delta ABC\) tỉ lệ với \(\Delta HAC\)
b)Chứng minh \(AC^2\)=BC.CH
Câu 2: Cho tam giác ABC vuông tại A, có đường cao AH. Biết HB=4cm,HC=9cm.
a) Chứng minh: \(AH^2\)=HB.HC
b) Tính diện tích tam giác ABC
Câu 3: Cho hình chữ nhật ABCD có AB=8cm, BC=6cm. Vẽ đường cao AH của \(\Delta ADB\)
a) Tính DB
b) Chứng minh \(\Delta ADH~\Delta ADB\)
c) Chứng minh \(AD^2\)=DH.DB
d) Chứng minh \(\Delta AHB~\Delta BCD\)
Giúp mik vs ạ
2:
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
b: BC=4+9=13cm
AH=căn 4*9=6cm
S ABC=1/2*6*13=39cm2
Cho tam giác ABC có độ dài 3 cạnh lần lượt là a,b,c. Ba đường cao ứng với độ dài ba cạnh lần lượt là ha, hb, hc. Các tổng ha+hb, hb+hc, ha+hc tương ứng tỉ lệ với 5;7;8. Tìm độ dài ba cạnh biết chu vi là 62 cm
Mk cần gấp lắm!!!Giúp mk nhanh mk sẽ tick cho mọi người!!!
Cho tam giác ABC với BC = a, CA = b, AB = c và ba đường cao ứng với ba cạnh lần lượt có độ dài ha,hb,hc Gọi r là khoảng cách từ giao điểm của ba đường phân giác của tam giác đến một cạnh của tam giác. Chứng minh 1/ha+1/hb+1/hc=1/r
Cho \(\Delta\) ABC có ba góc nhọn, vẽ 3 đường cao AD, BE, CF ( D \(\in\) BC, E \(\in\) AC, F \(\in\) AB ) cắt nhau tại H.
a) C/m \(\Delta\)HAF \(\sim\) \(\Delta\) HCD
b) Gọi M, N, P lần lượt là trung điểm các đoạn thẳng HA, HB, HC. C/m \(\Delta MNP\sim\Delta ABC\) và tính diện tich của tam giác MNP theo diện tích của tam giác ABC.
Xét ∆HAF và ∆HCD:
\(\widehat{HFA}=\widehat{HDC}=90^o\)
\(\widehat{AHF}=\widehat{CHD}\) (2 góc đối đỉnh)
=> ∆HAF~∆HCD(g.g)
b) Xét ∆AHB có: M là trung điểm của AH
N là trung điểm của HB
=> MN là đường trung bình của ∆AHB
=>MN//AB và \(MN=\dfrac{1}{2}AB\)
=> \(\widehat{HMN}=\widehat{BAM}\) (2 góc đồng vị)
Tương tự ở ∆AHC ta được: \(MP=\dfrac{1}{2}AC\) và \(\widehat{HMP}=\widehat{CAM}\)
Ta có: \(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}=\widehat{NMH}+\widehat{PMH}=\widehat{NMP}\)
\(\dfrac{MN}{MP}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}AC}=\dfrac{AB}{AC}\)
Xét ∆MNP và ∆ABC có:
\(\widehat{NMP}=\widehat{BAC}\left(cmt\right)\)
\(\dfrac{MN}{MP}=\dfrac{AB}{AC}\left(cmt\right)\)
=> ∆MNP~∆ABC
Ta có: \(\dfrac{S_{MNP}}{S_{ABC}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
=> \(S_{MNP}=\dfrac{1}{4}S_{ABC}\)