Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Minh Nghĩa
Xem chi tiết
Akai Haruma
17 tháng 12 2021 lúc 23:45

Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$

$\Rightarrow n+2\vdots d, n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d$ là ƯCLN $(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.

Lê Thị Trà My
Xem chi tiết
shitbo
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Khách vãng lai đã xóa
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Vương Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 14:20

1:

a: Gọi d=ƯCLN(n+5;n+4)

=>\(\left\{{}\begin{matrix}n+5⋮d\\n+4⋮d\end{matrix}\right.\)

=>\(n+5-n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>n+4 và n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+5;n+2)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+5⋮d\\2n+4⋮d\end{matrix}\right.\)

=>\(2n+5-2n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+5 và n+2 là hai số nguyên tố cùng nhau

c: Gọi d=ƯCLN(3n+7;n+2)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\n+2⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\3n+6⋮d\end{matrix}\right.\)

=>\(3n+7-3n-6⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+7 và n+2 là hai số nguyên tố cùng nhau

d: Gọi d=ƯCLN(2n+1;3n+1)

=>\(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)

=>\(6n+3-6n-2⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+1 và 3n+1 là hai số nguyên tố cùng nhau

HT.Phong (9A5)
15 tháng 10 2023 lúc 14:24

a) Gọi d là ƯCLN  của n + 4 và n + 5 

⇒ n + 4 ⋮ d và n + 5 ⋮ d 

⇒ (n + 5 - n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy n + 4 và n + 5 luôn là cặp SNT cùng nhau 

b) Gọi d là ƯCLN của 2n + 5 và n + 2

⇒ 2n + 5 ⋮ d và n + 2 ⋮ d

⇒ 2n + 5 ⋮ d và 2(n + 2) ⋮ d

⇒ (2n + 5 - 2n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy  2n + 5 và n + 2 luôn là cặp SNT cùng nhau 

c) Gọi d là ƯCLN của n + 2 và 3n + 7 

⇒ n + 2 ⋮ d và 3n + 7 ⋮ d

⇒ 3(n + 2) ⋮ d và 3n + 7 ⋮ d

⇒ (3n + 7 - 3n - 6) ⋮ d 

⇒ 1 ⋮ d 

⇒ d = 1

Vậy n + 2 và 3n + 7 luôn là cặp SNT cùng nhau

d) Gọi d là ƯCLN của 2n + 1 và 3n + 1

⇒ 2n + 1 ⋮ d và 3n + 1 ⋮ d

⇒ 3(2n + 1) ⋮ d và 2(3n + 1) ⋮ d

⇒ (6n + 3 - 6n - 2) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 2n + 1 và 3n + 1 luôn là cặp SNT cùng nhau 

Bùi thảo ly
Xem chi tiết
DSQUARED2 K9A2
30 tháng 8 2023 lúc 15:37

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

DSQUARED2 K9A2
30 tháng 8 2023 lúc 15:38

Bạn tham khảo nhé 

Bùi thảo ly
30 tháng 8 2023 lúc 15:56

thanks

Quân Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 15:00

a: Gọi d=ƯCLN(n+3;n+2)

=>n+3-n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>n+2 và n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+3;3n+5)

=>6n+9-6n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>2n+3 và 3n+5là hai số nguyên tố cùng nhau

Leonor
Xem chi tiết
Giang シ)
15 tháng 12 2021 lúc 21:35

 Đặt UCLN ( n+2; n+3 ) = d

=> n + 2 chia hết cho d ; n + 3 chia hết cho d

=> n + 3 - n - 2 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Nguyễn Minh Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

кαвαиє ѕнιяσ
Xem chi tiết

k hộ mik nhéundefinedundefined

Khách vãng lai đã xóa

TL

undefinedundefinedundefinedk hộ mik

Hoktot~

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1