Cho a,b,c là các số thuộc [-1;2] thỏa mãn: a2 + b2 + c2 = 6. CMR: \(a+b+c\ge0\)
Cho a,b,c là các số thực thuộc đoạn [0,1 ] .Chứng minh:
\(a\left(b-1\right)+b\left(1-c\right)+c\left(1-a\right)\le1\)
\(a\left(b-1\right)+b\left(1-c\right)+c\left(1-a\right)\le1\\ \Leftrightarrow-abc+ab+bc+ca-a-b-c+1\le2-abc\\ \Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le2-abc\)
lại có \(abc\le1\) nên \(2-abc\ge1\)
ta chứng minh \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
luôn đúng do \(0\le a;b;c\le1\)
vậy bđt dc cm
tick mik nhaaaaa.mik ms l9 thui
Cho M = (√a + 6)/(√a + 1)= (√a +1 + 5)/(√a + 1)= 1 + 5/(√a + 1) a)Tìm a thuộc Z để M thuộc Z b) cmr với a = 4/9 thì là số nguyên c) Tìm các số hữu tỉ a để M là số nguyên
a: Để M là số nguyên thì 5 chia hết cho căn a+1
=>căn a+1 thuộc {1;5}
=>a thuộc {0;4}
b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)
=>M là số nguyên
c: \(\sqrt{a}+1>=1\)
=>\(\dfrac{5}{\sqrt{a}+1}< =5\)
=>M<=6
\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)
=>2<=M<=6
M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)
=>\(\dfrac{5}{\sqrt{a}+1}=1\)
=>căn a+1=5
=>căn a=4
=>a=16
M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)
=>căn a+1=5/2
=>căn a=3/2
=>a=9/4
M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)
=>căn a+1=5/3
=>căn a=2/3
=>a=4/9
\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)
=>căn a+1=5/4
=>căn a=1/4
=>a=1/16
Cho a,b,c là các số thực thuộc đoạn [1,2 ].Chứng minh rằng:
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\).
Khi đó: \(\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow ab+bc\ge ac+b^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\\\dfrac{c}{a}+1\ge\dfrac{c}{b}+\dfrac{b}{a}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le2+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
Vì \(1\le c\le a\le2\Rightarrow\left(\dfrac{a}{c}-2\right)\left(\dfrac{2a}{c}-1\right)\le0\)
\(\Leftrightarrow\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)
\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)
Đẳng thức xảy ra khi \(a=b=2;c=1\) và các hoán vị.
giúp mình với: cho a,b,c là các số thực thuộc đoạn [0;1]. tìm GTLN của biểu thức P=a(1-b)+b(1-c)+c(1-a)
cho đa thức p(x)=ax^2+bx+c(a,b,c thuộc R). biết P(0), P(1), P(2) là các số nguyên. chứng minh rằng a+b, 2a,c là các số nguyên
1 >tìm số phần của tập hợp B gồm các số tuej nhiên lẻ có 3 chứ số
2) cho A =(0,2,4 :...100) và B là tập hợp các số chia hết cho 5 và nhỏ hơn 100.Gọi C là tập hợp gồm các phần tử thuộc tâp B và không thuộc tập hợp a .tìm số phần tử của tập C
Cho a,b,c là các số thực thuộc khoảng (0:1) thỏa mãn abc=(1-a)(1-b)(1-c)
Tìm GTNN của P=a+b+c\(+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho các số p = b^c + a, q = a^b + c, r = c^a + b (a, b, c thuộc N*) là các số nguyên tố. CMR 3 số p, q, r có ít nhất 2 số bằng nhauCho các số p = b^c + a, q = a^b + c, r = c^a + b (a, b, c thuộc N*) là các số nguyên tố. CMR 3 số p, q, r có ít nhất 2 số bằng nhau
Cho A là tập hợp các số tự nhiên chẵn không nhỏ hơn 20 và không lớn hơn 30; B là tập hợp các số tự nhiên lớn hơn 26 và nhỏ hơn 33.
a. Viết các tập hợp A; B và cho biết mỗi tập hợp có bao nhiêu phần tử.
b. Viết tập hợp C các phần tử thuộc A mà không thuộc B.
c. Viết tập hợp D các phần tử thuộc B mà không thuộc A.
làm đc tặng 1 TICK
a) cho a,b,c là các số nguyên dương sao cho mỗi số nhỏ hơn tổng của 2 số kia
CMR: (a/b+c) + (b/c+a) + (c/a+b) <2
b) Tìm 2 số x,y thuộc Q sao cho
1/x+1/y=1/x+y
a) Ta có :
a/b+c< 2a/(a+b+c)
b/(c+a)<2b/(a+b+c)
c/(a+b)<2c/(a+b+c)
=> a/(b+c)+b/(c+a)+c/(a+b)<(2a+2b+2c)/(a+b+c)=2
Vậy...