Tìm tích của giá trị nhỏ nhất và lớn nhất của các hàm số đó trên [ -2;2] y = x 2 + 4 x + 4 - x + 1
A. 0
B. -1
C. -2
D. 1
Tìm giá trị nhỏ nhất và lớn nhất của các hàm số đó trên [ -2; 2] y = x 2 + x 2 - 2 x + 1
A. max y= 5; min y=2
B. max y= 4; min y=1
C. max y= 4; min y= 1
D. max y= 5; min y= 1
Từ đề bài suy ra:
Bảng biến thiên
Ta có y(-2) =5; y(2) =3
Dựa vào bảng biến thiên ta có
Chọn D.
Tìm tích của giá trị lớn nhất và nhỏ nhất của hàm số y= x4-4x2-1 trên [ -1; 2].
A. 2
B. - 4
C. -5
D. 6
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bạc hai y = -2x2 + 4x + 3
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = -3x2 + 2x + 1 trên (1;3)
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = x2 - 4x - 5 trên (-1;4)
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Câu 3:
$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$
Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$
Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$
Tìm tích của giá trị lớn nhất và nhỏ nhất của hàm số y= x4+2x3-x trên [-1;1]
A. -2
B. -1/2
C. -1/4
D. 1
Bảng biến thiên
Từ bảng biến thiên ta có
Chọn B.
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - x 3 + 2 x 2 - x + 2 trên đoạn - 1 ; 1 2 . Khi đó tích số M.m bằng
A. 45 4
B. 212 47
C. 125 36
D. 100 9
Tích các giá trị lớn nhất và nhỏ nhất của hàm số y = x 2 + 2 x trên đoạn 1 2 ; 2 bằng
A. 15
B. 8
C. 51 4 .
D. 85 4 .
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số 1 ; 3 trên đoạn [1;3] bằng
A. 65 3
B. 6
C. 20
D. 52 3
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số y = 2 - cos x