cho1/a+1/b+1/c=2;1/a^2+1/b^2+1/c^2=2
chứng minh a+b+c=a.b.c
cho1/a+1/b+1/c=0 chứng minh (a+b+c)^2=a^2+b^2+c^2
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow ab+bc+ac=0\)
\(\Rightarrow2ab+2bc+2ac=0\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2\)
cho1/a+1/b+1/c = 0
tinh bc/a^2+ca/b^2+ab/c^2
B1: Cho1/a+1/b+1/c=1/a^2+1/b^2+1/c^2=2. cm a+b+c=a.b.c
B2: tìm x,y thỏa mãn x^2 +y^2+1/x^2+1/y^2=4
1)cho1/b,c cắt a,a tại A,B sao cho A bằng góc A= 45
a)tính các góc A,B
Cho
1.tan α=\(\dfrac{1}{3} \) tính A=\(\dfrac{2\sin^2x+5}{4\cos^2x-3}\)
2.cot α=\(\dfrac{2}{5}\) tính B=\(\dfrac{3\cos^2x-\sin^2x}{c\text{os}^2x+2\sin^2x}\)
\(A=\dfrac{2tan^2a+\dfrac{5}{cos^2a}}{4-\dfrac{3}{cos^2a}}=\dfrac{2tan^2a+5\left(1+tan^2a\right)}{4-3\left(1+tan^2a\right)}=...\) (bạn tự thay số bấm máy nhé)
\(B=\dfrac{3cot^2a-1}{cot^2a+2}=...\)
a)20chia hết cho 2x-3
b)-8chia hết chox+1
c)x-5chia hết chox+1
d)2x-3chia hết cho1-x
Tìm n thuộc Z để
a)2n-1 chia hết cho n+4
b) 3n chia hết cho 5-2n
c) 7n+11 chia hét cho1-3n
a, n-4 chia hết n-4
=>2(n-4)chia hết n-4
hay 2n-4 chia het n-4
vì 2n-1 chia het n-4
Nên (2n-1)-(2n-4) chia hết cho n-4
do đó 3 chia hết n-4
hay (n-4) thuộc ước của 3 là 3;1
+, n-4=3
n=7
+,n-4=1
n=5
Vậy n = 7;5
b, Có 3n chia hết 5-2n
=>2.3n chia hết 5-2n
hay 6n chia hết 5-2n
vì 5-2n chia hết 5-2n
nên 3(5-2n) chia hết 5-2n
do đó 15-6n chia hết 5-2n
Suy ra 6n+(15-6n) chia hết 5-2n
hay 15 chia hết 5-2n
nên (5-2n) thuộc ước của 15 là 15;5;3;1
Xét +, 5-2n=15
2n =-10
n=-5(loại vì n thuộc N)
+, 5-2n =5
2n=0
n=0(TM)
+, 5-2n=1
2n=4
n=2 (TM)
+,5-2n=3
2n=2
n=1(TM)
Vậy n=0;1;2
1+1-2=?
ai nhanh nhất milk sẽ tick cho1
Bài 1: Tìm a sao cho
1. 2𝑥²− 5x + a chia hết cho 2x + 1
2. 𝑥⁴− 9𝑥³+ 21x²+ 𝑥 + 𝑎 chia hết cho x² − 𝑥 − 2
1) \(2x^2-5x+a=x\left(2x+1\right)-3\left(2x+1\right)+3+a=\left(2x+1\right)\left(x-3\right)+3+a⋮\left(2x+1\right)\)
\(\Rightarrow3+a=0\Rightarrow a=-3\)
2) \(x^4-9x^3+21x^2+x+a=x^2\left(x^2-x-2\right)-8x\left(x^2-x-2\right)+15\left(x^2-x-2\right)+30+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+30+a⋮\left(x^2-x-2\right)\)
\(\Rightarrow30+a=0\Rightarrow a=-30\)