a) x/2 = y/5 và xy = 10
b) x/5 = y/6 ; y/8 = z/7 và x+y- z =69
a)Cho x+y=1 và xy=-6
Tính x^2+y^2;x^3+y^3;x^5+y^5
b)Cho x-y=1 và xy=6
Tính x^2+y^2; x^3-y^3; x^5-y^5
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)
Giá trị của biểu thức P = -x^2y + x^2 + xy + 2 tại x = -2 và y = 2 là:
A. -10
B. -14
C. -6
D. 2
a)Cho x+y=1 và xy=-6
Tính x^2+y^2;x^3+y^3;x^5+y^5
b)Cho x-y=1 và xy=6
Tính x^2+y^2; x^3-y^3; x^5-y^5
Các cậu ơi giúp mk vs ai trl đc mk sẽ tick
Nhanh hộ mk nha
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
a) Cho \(x + y = 12\) và \(xy = 35\). Tính \({\left( {x - y} \right)^2}\)
b) Cho \(x - y = 8\) và \(xy = 20\). Tính \({\left( {x + y} \right)^2}\)
c) Cho \(x + y = 5\) và \(xy = 6\). Tính \({x^3} + {y^3}\)
d) Cho \(x - y = 3\) và \(xy = 40\). Tính \({x^3} - {y^3}\)
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
mình đang gấp
Bài 5. Tìm x, y∈ ℤ, biết: a) (x – 3).(y + 4) = –7 b) (x – 1).(xy + 1) = 2 c) 5x + xy – 4y = 9 d) x.y = 6 và x + y =5
d: x+y=5
nên x=5-y
Ta có: xy=6
=>y(5-y)=6
=>y2-5y+6=0
=>(y-2)(y-3)=0
=>y=2 hoặc y=3
=>x=3 hoặc x=2
a: \(\Leftrightarrow\left(x-3;y+4\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-11\right);\left(2;3\right);\left(-4;-3\right);\left(10;-5\right)\right\}\)
Tính giá trị biểu thức
a)A= x5 - y5 biết x + y =7; x2 + y2 = 25 và x > y
b) B = x6y +xy6 biết x + y = S; xy = P ( tính B theo S và P)
Xài trò này chắc Oke :))
a)
Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p
\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)
\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)
\(=1267\)
b)
\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)
Ta tính \(x^5+y^5\) theo S và P
Dễ có:
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)
\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)
\(=S^5-5S^3P+2SP^2-S^2P\)
Chắc không nhầm lẫn gì ở việc tính toán =)))
1)x/2=y/3=z/-4 và 3x-2z=99
2)x/2=y/3=z/6 và 4y-3x=66
3)x/4=y/3 và 3y=5z và x-y-z=100
4)x/5=y/3=z/2 và 2x-3y=100
5)x/5=y/2 và xy=90
6)x/4=y/5 và xy=20
7)x/2=y=2/3 và 3x-2y+4z=16
8)x=y/6=z/3 và 2x-3y+4z=-24
Tìm x và y nguyên
x.y = 6
(2-x).(y+1)=5
xy-x+2y=5
x.(y+2)+y=1
xy=x-y
m đg cần gấp giúp m vs :(
\(x\cdot y=6\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-1\\y=-6\end{cases}}\)
hoặc \(\hept{\begin{cases}x=6\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=-6\\y=-1\end{cases}}\)
hoặc \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
hoặc \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-3\\y=-2\end{cases}}\)
\(\left(2-x\right)\left(y+1\right)=5\)
có 4 trường hợp:
\(\hept{\begin{cases}2-x=5\\y+1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}\)
\(\hept{\begin{cases}2-x=-5\\y+1=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
\(\hept{\begin{cases}2-x=1\\y+1=5\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}\)
\(\hept{\begin{cases}2-x=-1\\y+1=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-6\end{cases}}\)