Tam giác ABC cân tại A . Trên cạnh AB lấy điểm D ; tia đối tia CA lấy điểm E sao cho BD = CE . Nối D với E . gọi I là trung điểm cảu DE
CM : B ; I ; C thẳng hàng
Cho tam giác ABC cân tại A,trên cạnh AB và AC lần lượt lấy điểm D và E sao cho AD=AE.Gọi K là giao điểm của CD và BE.
a,Cm: tam giác ADC= tam giác AEB
b,Cm:tam giác KBC cân
c,trên tia đối của tia CB lấy điểm M sao cho CM=CB
Tính góc ABC nếu BAC=2*góc MAC
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
cho tam giác abc cân tại a trên cạnh ab lấy điểm d trên cạnh ac lấy điểm e sao cho ad = ae
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Chứng minh: DE//BC
Vì AD=AE.
=>tg ADE cân tại A.
Vậy, suy ra: góc ADE= góc ABC(vì cả 2 tg đều cân tại A nên các góc ở đáy bằng nhau).
Mà góc ADE và góc ABC ở vi trí đồng vị.
=>DE // BC.
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho BD=CE. Chứng minh DE//BC
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC
Bài 1 :Cho tam giác ABC cân tại A, góc A= 20 độ. Trên cạnh AB lấy điểm D sao cho AD=BC. CMR:góc DCA= 1/2 góc A
Bài 2 :Cho tam giác ABC vuông cân tại A, góc C=15 độ. Trên tia BA lấy điểm O
sao cho BO=2AC.CMR : tam giác OBC cân.
Cho tam giác ABC cân tại A điển O nằm trong tam giác đó trên cạnh AB lấy điểm D . trên cạnh BC lấy điểm E sao cho OD song song BC . OE song song AC .Chứng Minh rằng tứ giác DOEB là hình thang cân
Ta có: \(\widehat{BEO}=\widehat{C}\)
mà \(\widehat{C}=\widehat{B}\)
nên \(\widehat{BEO}=\widehat{B}\)
Xét tứ giác BDOE có OD//BE
nên BDOE là hình thang
mà \(\widehat{BEO}=\widehat{B}\)
nên BDOE là hình thang cân