Tìm số nguyên tố p thỏa mãn: p=2x2-1; p2=2y2-1 với x;y là các số nguyên
Lời giải:
Nếu $p$ chia hết cho $5$ thì $p=5$. Khi đó $4p^2+1=4.5^2+1=101$ là snt và $6p^2+1=6.5^2+1=151$ là snt (thỏa mãn)
Nếu $p$ không chia hết cho 5. Khi đó $p^2$ chia $5$ dư $1$ hoặc $4$.
+ Nếu $p^2$ chia $5$ dư $1$
$\Rightarrow 4p^2$ chia $5$ dư $4$. Khi đó $4p^2+1$ chia hết cho $5$. Mà $4p^2+1>5$ nên không là snt (trái với giả thiết)
+ Nếu $p^2$ chia $5$ dư $4$
$\Rightarrow 6p^2$ chia $5$ dư $24$, hay dư $4$
$\Rightarrow 6p^2+1$ chia hết cho $5$. Mà $6p^2+1>5$ nên không là snt (trái với đề)
Vậy $p=5$ là kết quả duy nhất thỏa mãn.
Bài 1:Tìm số nguyên tố p thỏa mãn:
p+2 ;p+6 ; p+14 ; p+18 đều là số nguyên tố
Lời giải:
Nếu $p\vdots 5$ thì $p=5$. Thay vô thấy thỏa mãn
Nếu $p=5k+1$ với $k$ nguyên thì $p+14=5k+15\vdots 5$. Mà $p+14>5$ nên $p+14$ là hợp số (loại)
Nếu $p=5k+2$ với $k$ nguyên thì $p+18=5k+20\vdots 5$. Mà $p+18>5$ nên $p+18$ là hợp số (loại)
Nếu $p=5k+3$ với $k$ là nguyên. Khi $k=0$ thì $p=3$ (thử vô không thỏa mãn). Khi $k>0$ thì thì $p+2=5k+5\vdots 5$, mà $p+2>3$ nên $p+2$ là hợp số (loại)
Nếu $p=5k+4$ với $k$ nguyên thì $p+6=5k+10\vdots 5$. Mà $p+6>5$ nên $p+6$ là hợp số (loại)
Vậy $p=5$ là đáp án duy nhất.
cho số nguyên tố p thỏa mãn 1/a+1/b=1/p (a;b E N*) tìm số nguyên tố p thỏa mãn để a hoặc b là số chính phương
giải chi tiết mình sẽ tick cho thật nhìu
Tìm số nguyên tố p sao cho p^2+1 và p^4+1 cũng là số nguyên tố. Trả lời: Số nguyên tố thỏa mãn là p =
1) tìm p nguyên tố sao cho : p + 14 và p + 40 cũng nguyên tố
2) Tìm số nguyên tố x,y thỏa mãn
a)x^2 + 45 = y^2
b) Tìm n thuộc N thỏa mãn :3^n +18 là số nguyên tố
c) Tìm x biết : 3^x + 4^x = 5^x
ai lm nhanh mk t cho
p=2 không thỏa
p=3 thỏa
nếu p>3 thì p chia 3 dư 1 hoặc 2
p chia 3 dư 1 => p+14 chia hết cho 3; lớn hơn 3 => vô lí
p chia 3 dư 2 => p+40 chia hết cho 3; lớn hơn 3 => vô lí
vậy p=3
\(\text{ nếu }x=2\text{ thì: }x^2+45=49=7^2\text{ nên }y=7\left(\text{tm}\right)\)
\(+,x>2\text{ thì x lẻ nên }x^2\text{ chia 4 dư 1}\left(\text{bạn tự cm}\right)\)
\(\Rightarrow x^2+45\text{ chia 4 dư 2 nên }y^2\text{ chia 4 dư 2 }\left(\text{vô lí}\right)\)
Bài 1:
a) Tìm số nguyên tố thỏa mãn : (p+4), (p+8) cũng là các số nguyên .
b) Tìm số hữu tỉ a thỏa mãn : 2a + 5a là số tự nhiên và là số chính phương.
Giúp mình nha mọi người.
Cảm ơn bạn Phan Thị Nhã Uyên ~~~
tìm cặp số nguyên (x;y) thỏa mãn: 2x2+y2+2xy-6x-2y=8
Lời giải:
$2x^2+y^2+2xy-6x-2y=8$
$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$
$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$
$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$
Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại)
Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)
Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$
$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$
TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$
TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$
TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$
Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)
tìm các số nguyên tố p thỏa mãn 2p + p2 là số nguyên tố
Xét p=2
⇒ \(2^2+2^2=4+4=8\left(L\right)\)
Xét p=3
⇒ \(2^3+3^2=8+9=17\left(TM\right)\)
Xét p>3
⇒ p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.
Do đó: 2p+p2là hợp số (L)
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Tìm x, y nguyên dương thỏa mãn x2−2xy+2x2−2xy+2 là số nguyên
Cho p là số nguên tố thỏa mãn p+3 và p+10 cũng là số nguyên tố. Tìm số nguyên x sao cho(2x–1)²–p³=22.
Lời giải:
Nếu $p$ lẻ thì $p+3$ chẵn. Khi đó $p+3$ là nguyên tố khi $p+3=2$
$\Rightarrow p=-1$ (vô lý- loại)
Nếu $p$ chẵn thì $p+10$ chẵn. Khi đó $p+10$ là nguyên tố khi $p+10=2$
$\Rightarrow p=-8$ (vô lý - loại)
Vậy không tồn tại số nguyên tố $p$ thỏa mãn đề.