Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thi Mai
Xem chi tiết
Đinh Tuấn Việt
1 tháng 6 2016 lúc 15:07

Số chia hết cho 27 có tổng các chữ số chia hết cho 27

Ta có :

\(10^n-36n-1=10^n-1-36n=99...9-36n\) (n chữu số 9)

= 9 . (11...1 - 4n) (n chữ số 1)

Xét 11...1 - 4n = 11...1 - n - 3n 

; Mà 11...1 (n chữ số 1) có tổng các chữ số là n

=> 11...1 - n chia hết cho 3

=> 11...1 - n - 3n chia hết cho 3

=> 9.(11...1 - n - 3n) = 9.(11...1 - 4n) chia hết cho 27

hay 10n - 36n - 1 chia hết cho 27

Nguyen Thi Mai
4 tháng 6 2016 lúc 9:37

Cảm ơn bạn Đinh Tuấn Việt nhéhihi

ntk
Xem chi tiết
đạt trần tiến
1 tháng 6 2016 lúc 14:15

Sorry!!!! Mình mới học lớp 4 thôi à

Mai Xuân Phong
Xem chi tiết
T.Thùy Ninh
6 tháng 6 2017 lúc 16:04

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

Nguyễn Xuân Tiến 24
6 tháng 6 2017 lúc 16:07

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

Hồ Thu Hằng
Xem chi tiết
Cô Pé Ngôks
Xem chi tiết
Sally Nguyen
Xem chi tiết
Nguyễn Phương Mai
Xem chi tiết
Nguyen Van Thanh
10 tháng 11 2016 lúc 22:58

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

Nguyễn Phương Mai
11 tháng 11 2016 lúc 19:05

em cam on thay a

Phan Nghĩa
17 tháng 10 2020 lúc 14:32

Ta có \(n^4-10n^2+9=n^4-n^2-\left(9n^2-9\right)=n^2\left(n^2-1\right)-9\left(n^2-1\right)=\left(n^2-9\right)\left(n^2-1\right)\)

\(=\left(n-3\right)\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

Do n là số lẻ suy ra n có dạng \(2d+1\)nên ta sẽ cm \(\left(2d-2\right)2d\left(2d+2\right)\left(2d+4\right)=16\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮16\)

Giờ ta cần chứng minh \(\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮24\)thật vậy :

  \(d-1;d;d+1;d+2\)là 4 số nguyên liên tiếp nên chia hết cho 8 và 3 

Suy ra ta có điều phải chứng minh

Khách vãng lai đã xóa
Diệu Linh Trần Thị
Xem chi tiết
Lê Thành Vinh
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

__Anh
Xem chi tiết