cho tứ giác ABCD nội tiếp (O:R)
cho góc C =105 độ; góc D=a dộ .Tính góc A,B
1. cho tứ giác ABCD biết góc A : góc B : góc c ; góc D = 1:2:3:4 tính các góc của tứ giác
2. chó tứ giác ABCD có góc A =105 độ: góc B = 130 độ, góc C-góc D = 25 độ. Tính góc C, góc D
3. Cho tứ giác ABCD có góc A = 57 độ, C= 110 độ, D= 75 độ. Tính góc ngoài tại B
4. Chứng minh rằng: Biết 1 tứ giác tổng 2 đường chéo lớn hơn nửa chu vi của tứ giác
5. Cho tứ giác ABCD có góc B+gócD= 180 độ, AC là tia phân giác góc A. Chứng minh cạnh CB = cạnh CD
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O:R). Tia phân giác của góc ACB cắt AB tại D và cất (O:R) tại E, Ha Tia CA và BE cất nhau tại S. a) Chứng minh tứ giác ASED nội tiếp. b) Gọi 7 là trung điểm của 4. Chứng minh ba điểm E,I,O thẳng hàng.
a) Vì CE là phân giác \(\angle ACB\Rightarrow\angle BCE=\angle ACE\Rightarrow\stackrel\frown{AE}=\stackrel\frown{BE}\Rightarrow AE=BE\)
Vì \(\Delta BAS\) vuông tại A có: \(AE=BE\Rightarrow\) E là trung điểm SB
mà CE là phân giác \(\angle ACB\Rightarrow\Delta BCS\) cân tại C \(\Rightarrow CE\bot BS\)
\(\Rightarrow\angle SEC=90\Rightarrow\angle SED+\angle SAD=90+90=180\Rightarrow ADES\) nội tiếp
b) Hình như bạn bị lỗi đánh máy chứ 7 là trung điểm của 4 là gì???
Cho tứ giác ABCD nội tiếp trong đường tròn biết A^ = 75 độ ; B= 60 độ . Tình số đo góc C và góc D
Vì tứ giác ABCD nội tiếp (O)
=> góc B + góc C = 180 độ (tổng 2 góc đối bằng 180 độ)
=> 60 + góc C = 180
=> góc C = 180 - 60 = 120 độ
Tiếp tục, ta cũng có góc A + góc D = 180 độ
=> 75 + góc D = 180
=> góc D = 180 - 75 = 105 độ
Note: Bài này đoạn kết còn có cách tính khác, cần inbox mình
Theo mk thi: goc C=105° va goc D=120°
Aj thay dung thj ung ho mk nha!!! Cam on.
Ban Vu Nhu Mai ve hinh nhu the thi se la tu giac ABDC ( saj de bai)
De bai la tu giac ABCD .
cho tứ giác abcd có d=105 độ :c=85 độ;b=110độ tính góc a
\(\widehat{A}=360^0-105^0-85^0-110^0=60^0\)
áp dụng tính chất tổng 4 góc của tam giác =360 độ
=>^a=360-105-85-110=60 độ
Cho tứ giác ABCD có AB = CB, AD = AC = CD và góc A = 105 độ. Tính các góc của tứ giác ABCD.
Cho tam giác ABC ( AB < AC ) nhọn nội tiếp đường tròn (O:R), với các đường cao AD, BE, CF và trực tâm H .
a) Chứng minh các tứ giác BFEC, BFHD nội tiếp .
b) Cho số đo cung BC = 90 độ , số đo cung AC = 120 độ . Tính số đo cung EFD
c) Tính độ dài đoạn thẳng BC theo R
Cho tứ giác ABCD có Â + góc B+ = 105 độ ; Â- B = 15 độ. Góc C bằng 2 lần góc D. Tính số đo mỗi góc.
Tứ giác ABCD có : góc A + góc B + góc C + góc D = 3600
(góc A + góc B) + (góc A - góc B) = 1050 + 150
2.góc A = 1200 => góc A = 600 => góc B = 1050 - 600 = 450
góc C + góc D = 3600 - (góc A + góc B)
2.góc D + góc D = 3600 - 1050
3.góc D = 2550 => góc D = 850 => góc C = 850.2 = 1700
A + B = 1050
A - B = 150
A = (1050 + 150) : 2 = 600
B = (1050 - 150) : 2 = 450
Tứ giác ABCD có:
A + B + C + D = 3600
600 + 450 + C + D = 3600
C + D = 3600 - 1050
C + D = 2550
\(C=2D\Rightarrow\frac{C}{2}=\frac{D}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{C}{2}=\frac{D}{1}=\frac{C+D}{2+1}=\frac{255^0}{3}=85^0\)
\(\frac{C}{2}=85^0\Rightarrow C=85^0\times2=170^0\)
\(\frac{D}{1}=85^0\Rightarrow D=85^0\)
Vậy \(A=60^0;B=45^0;C=170^0;D=85^0\)
Giải bài toán hình lớp 9 Cho hình thang ABCD (AB//CD) nội tiếp (O) . Các đường chéo AC,BD cắt nhau tại E , các cạnh bên AD,BC kéo dài cắt nhau tại F. a) Chứng minh tam giác OAC= tam giác OBD b) Chứng minh tứ giác ADOE và tứ giác AOFC nội tiếp c) Gọi M,N theo thứ tự là trung điểm của BD,AC và P là hình chiếu của B lên dường thẳng CD.Chứng minh tứ giác MNCP là hình bình hành d) Cho góc DOC=120 độ , góc AOB=90 độ , tính diện tích tứ giác ABCD theo R
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại E kẻ EF vuông góc ad a) Chứng minh tứ giác ECDF nội tiếp Xác định tâm I b) Chứng minh CA là phân giác của góc BCF c) Chứng minh tứ giác bcef nội tiếp
a) Xét (O) có
ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))
AD là đường kính(gt)
Do đó: ΔACD vuông tại C(Định lí)
Suy ra: AC\(\perp\)CD tại C
hay \(EC\perp CD\) tại C
Xét tứ giác ECDF có
\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối
\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)