Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Tuấn Phạm
Xem chi tiết
Nguyễn Huy Tú
15 tháng 3 2022 lúc 13:22

1, Theo định lí Pytago tam giác AHB vuông tại H 

\(AH=\sqrt{AB^2-BH^2}=8cm\)

2, Xét tam giác ABH và tam giác ACH có 

AB = AC ; AH _ chung 

Vậy tam giác ABH = tam giác ACH (ch-cgv) 

3, Vì tam giác ABC cân tại A có AH là đường cao 

đồng thời là phân giác 

Lại có DB = CE ; AB = AC 

=> AD = AE 

Xét tam giác ADH và tam giác AEH có 

AD = AE ( cmt ) ; AH _ chung ; ^DAH = ^EAH 

Vậy tam giác ADH = tam giác AEH (c.g.c) 

=> DH = HE ( 2 cạnh tương ứng ) 

Vậy tam giác HDE cân tại H 

4, Ta có AD/AB = AE/AC => DE//BC 

Anh Tuấn Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2022 lúc 10:10

1: AH=8cm

2: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

4: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

A B C
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 13:27

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

Tạ Minh Quân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2017 lúc 17:26

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 9 2019 lúc 3:33

Ice Tea
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 20:51

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-30^0=60^0\)

Ta có: CD là tia phân giác của \(\widehat{ACB}\)(gt)

nên \(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}=\dfrac{60^0}{2}=30^0\)

mà \(\widehat{DBC}=30^0\)(gt)

nên \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔBCD có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔBCD cân tại D(Định lí đảo của tam giác cân)

Xét ΔACD vuông tại A và ΔHCD vuông tại H có 

CD chung

\(\widehat{ACD}=\widehat{HCD}\)(CD là tia phân giác của \(\widehat{ACH}\))

Do đó: ΔACD=ΔHCD(Cạnh huyền-góc nhọn)

Suy ra: CA=CH(hai cạnh tương ứng)

Xét ΔCAH có CA=CH(cmt)

nên ΔCAH cân tại C(Định nghĩa tam giác cân)

Xét ΔCHA cân tại C có \(\widehat{ACH}=60^0\)(cmt)

nên ΔCHA đều(Dấu hiệu nhận biết tam giác đều)

b) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan\widehat{B}\)

\(\Leftrightarrow AC=5\cdot\tan30^0\)

hay \(AC=\dfrac{5\sqrt{3}}{3}cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+\left(\dfrac{5\sqrt{3}}{3}\right)^2=\dfrac{100}{3}\)

hay \(BC=\dfrac{10\sqrt{3}}{3}cm\)

Vậy: \(AC=\dfrac{5\sqrt{3}}{3}cm\)\(BC=\dfrac{10\sqrt{3}}{3}cm\)

Anh Tuấn Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 21:18

1: AH=8cm

2: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

4: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Vĩnh Khang Bùi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2017 lúc 3:36