Cho Δ ABC vuông tại A, có đáy BC = 5cm và AB = 4cm. Diện tích Δ ABC là ?
A. 24 c m 2
B. 12 c m 2
C. 6 c m 2
D. 14 c m 2
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm.
a) Chứng minh Δ ABC vuông
b) Trên BC lấy điểm D sao cho BA = BD. Từ D vẽ Dx ⊥ BC, Dx cắt AC tại H
Chứng minh Δ HBA = Δ HBD, suy ra BH là tia phân giác của ABC
c) Tia Dx cắt AB tại I. Chứng minh IH + IB > HD + BH
d) Gọi M là trung điểm IC. Chứng minh ba điểm B, H, M thẳng hàng
Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D
Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?
A. Δ ABC ∼ Δ DEF
B. ABCˆ = EFDˆ
C. ACBˆ = ADFˆ
D. ACBˆ = DEFˆ
Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:
A. Δ RSK ∼ Δ PQM
B. Δ RSK ∼ Δ MPQ
C. Δ RSK ∼ Δ QPM
D. Δ RSK ∼ Δ QMP
Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì
A. RSKˆ = PQMˆ
B. RSKˆ = PMQˆ
C. RSKˆ = MPQˆ
D. RSKˆ = QPMˆ
Bài 4: Chọn câu trả lời đúng?
A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF
C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF
D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
A. 17,5 B. 18
C. 18,5 D. 19
II. Bài tập tự luận
Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc vói BC tại H. Gọi E và F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh AH2 - AE.AB.
b) Chứng minh Δ A F E ~ Δ A B C ;
c) Lấy M đối xứng với A qua E, tia MH cắt cạnh AC tại N. Chứng minh A B H ^ = A N H ^ và EF//HN.
d) Gọi O là trung điểm của BC; AO giao với HN tại K. Cho biết A C B ^ = 30 ° , hãy tính tỉ số A K A N S H C A
cho Δ abc vuông tại A(AC<AB) M là trug đ của AB, P là đ nằm trong Δ ABC sao cho MP vông góc vs AB .Trên tia đối cua tia MP lấy đ Q sao cho MP=MQ
a) c/m tứ giasc APBQ là hình thoi
b)qua C vẽ đường thẳng //vs BP cắt tia QP tại E .C/M tuứ giác ACEQ là hình bình hành
c)gọi N là giao đ của PE và BC +C/M AC=2MN
+Cho MN =3cm ,AN=5cm.Tính chu vi của ΔABC
Cho ∆ABC vuông tại A với AB = 3cm, AC = 4cm. Kẻ đường cao AM và đường phân giác AK của ∆ABC.
a) C/m ∆ABC ~ ∆ MAB, AB² = BC × BM.
b) Tính BC, BK.
c) Tính diện tích ∆AMK.
d) C/m MA × KC = MC × KB.
cho tam giác ABCvuông tại A , đường cao AH .
a) chứng minh Δ ABC đòng dang với ΔHAC
b) chứng minh AC^2 = CH . BC ,
c) trên tia đối của AB lấy CD sao cho CD>AB , vẽ AK vuông góc với DC tại K , gọi M là giao điểm của DH và KB . chứng minh Δ DMK đòng dạng với Δ BMH
Cho Δ ABC vuông tại A, biết AB = 6cm, BC = 10cm, đường cao AH.
a) CM: Δ ABC ~ Δ HBA
b) Tính tỉ số diện tích: HBA/ABC
c) Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d) Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK.