Cho đường thẳng d1:y = -x+6; d2: y=2x; d3: y= x/2
a) vẽ đồ thi 3 trên hàm số trên cùng 1 hệ trục Oxy
b) tìm tọa độ giao điểm A,B của d1 và d2, d2 và d3
c) CMR: tam giác OAB là tam giác cân
Please help meeee
Cho ba đường thẳng (d1) y=\(\dfrac{1}{2}\)x-3; (d2) y=3-2x; (d3) y=-\(\dfrac{7}{6}\)x+1
a, Vẽ các đường thẳng trên cùng một hệ trục tọa độ Oxy. Chứng minh ba đường thẳng này đồng quy
b, Gọi giao điểm của 3 đường thẳng (d1); (d2); (d3) là A. Giao của (d1); (d2) với trục tung lần lượt là B và C. Tính chu vi và diện tích của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau d 1 : x - 2 2 = y + 2 1 = z - 6 - 2 và d 2 : x - 4 1 = y + 2 - 2 = z + 1 3 . Phương trình mặt phẳng (P) chứa đường thẳng d1 và song song với đường thẳng d2 là
A. (P): 2x + y - 6 = 0.
B. (P): x + 8y + 5z + 16 = 0.
C. (P): x + 4y + 3z - 12 = 0.
D. (P): x + 8y + 5z - 16 = 0.
Câu 3:Cho đường thẳng (d1):y=(m-1)x+4.Tìm giá trị của m để:
a)Đường thẳng (d1) và đường thẳng (d2):y=(2m+3)x+3m-1 song song với nhau.
b)Đường thẳng (d1) và đường thẳng (d3):y=x+2m+2 cắt nhau tại một điểm có tung độ bằng 3.
c)Đường thẳng (d1) tiếp xúc với đường tròn tâm O bán kính 2\(\sqrt{2}\)(với O là gốc tọa độ)
Để hàm số y=(m-1)x+4 là hàm số bậc nhất thì \(m-1\ne0\)
hay \(m\ne1\)
a) Để (d1) và (d2) song song với nhau thì \(\left\{{}\begin{matrix}m-1=2m+3\\3m-1\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2m=3+1\\3m\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-m=4\\3m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\m\ne\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=-4\)
Kết hợp ĐKXĐ, ta được: m=-4
Vậy: Để (d1) và (d2) song song với nhau thì m=-4
Bài 3: (6 điểm) Cho các hàm số y = x + 1 (d1) và y = - x + 3 (d2) a/ Vẽ đồ thị (d1) và (d2) trên cùng một mặt phẳng tọa đ b/ Tính góc tạo bởi các đường thẳng (d1) và (d2) với trục hoành. c/ Hai đường thẳng (d1) và (d2) cắt nhau tại C. Tìm toạ độ điểm C. d/ Tìm giá trị của m để đường thẳng (d3): y = mx + m – 1 với (d1) và (d2) đồng quy. Giúp mik vs đang cần gấp r ạ🥺
b:
Goi a1,a2 lần lượt là số đo góc tạo bởi (d1), (d2) với trục Ox
tan a1=1
=>a1=45 độ
tan a2=-1
=>a2=135 độ
c: Tọa độ C là:
x+1=-x+3 và y=x+1
=>x=1 và y=2
d: Thay x=1 và y=2 vào y=mx+m-1, ta được:
m+m-1=2
=>2m-1=2
=>2m=3
=>m=3/2
Cho hai đường thẳng d1: y = (m2-6)x +m và d2: y = -2x + 3. Tìm tham số m để d1 // d2 và d1 cắt trục tung tại điểm có tung độ bằng 2
Để hai đường thing d1 và d2 song song với nhau
=>\(\left\{{}\begin{matrix}a=a^,\\b\ne b^,\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6=-2\\m\ne3\end{matrix}\right.\)
\(\Leftrightarrow m=\mp2\) t/m
Vậy với m ,,, thì d1 // d2
Theo bài ra ta có ddường thing d cắt trục ting tại điểm có tung độ bằng 2 , gọi giao điểm của d1 và Oy là A
=> \(A_{\left(0,2\right)}\)
=> A \(\in\) \(\left(d1\right)y=\left(m^2-6\right)x+m\)
=> Thay x = 0 và y = 2 vào phương trình đường thẳng d1 ta được :
m= 2
Vậy ,,,,
cho 2 đường thẳng d1: x + 2y + 4 = 0; d2: 2x - y + 6 = 0. Số đo góc giữa d1; d2 là:
A. 300
B. 600
C. 450
D. 900
\(d_1\) nhận \(\overrightarrow{n_1}=\left(1;2\right)\) là 1 vtpt
\(d_2\) nhận \(\overrightarrow{n_2}=\left(2;-1\right)\) là 1 vtpt
Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=1.2+2.\left(-1\right)=0\Rightarrow d_1\perp d_2\)
hay góc giữa 2 đường thẳng là 90 độ
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x = t y = - 1 - 4 t z = 6 + 6 t và đường thẳng d 2 : x 2 = y - 1 1 = z + 2 - 5 . Viết phương trình đường thẳng đi qua A 1 ; - 1 ; 2 , đồng thời vuông góc với cả hai đường thẳng d 1 và d 2 .
A. x - 1 14 = y + 1 17 = z - 2 9
B. x - 1 2 = y + 1 - 1 = z - 2 4
C. x - 1 3 = y + 1 - 2 = z - 2 4
D. x - 1 1 = y + 1 2 = z - 2 3
cho đường thẳng(d1) y=x+2 gọi A là điểm thuộc đường thẳng (d1) có hoành độ x=2 viết phương trình đường thẳng (d2) đi qua A vuông góc với (d1)
Tọa độ điểm `A` có `x=2` và `in (d_1)`
`=>` Thay `x=2` vào `(d_1)` có: `y=2+2=4`
`=>A(2;4)`
Gọi ptr đường thẳng `(d_2)` có dạng: `y=ax + b`
Vì `(d_2) \bot (d_1)=>a.a'=-1`
`=>a.1=-1<=>a=-1`
Thay `A(2;4)` và `a=-1` vào `(d_2)` có:
`4=-1.2+b<=>b=6`
Vậy ptr đường thẳng `(d_2)` là: `y=-x+6`
Cho hàm số bậc nhất y=2mx + m - 1 có đồ thị (d1). Tìm m để:
a) Đường thẳng (d1) song song với đường thẳng y= -\(\dfrac{1}{3}\)x + 1
b) (d1) trùng với đường thẳng -2x - y = 5
a.
Để hai đường thẳng song song:
\(\Rightarrow\left\{{}\begin{matrix}2m=-\dfrac{1}{3}\\m-1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{1}{6}\\m\ne2\end{matrix}\right.\) \(\Leftrightarrow m=-\dfrac{1}{6}\)
b.
\(-2x-y=5\Leftrightarrow y=-2x-5\)
Để hai đường thẳng trùng nhau:
\(\Leftrightarrow\left\{{}\begin{matrix}2m=-2\\m-1=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m=-4\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy ko tồn tại m để 2 đường thẳng trùng nhau
Bài 1: cho 2 đường thẳng y=(m-3)x+3 (d1) và y= -x+m (d2). Tìm m để (d1)// (d2)
Bài 2: cho 2 đường thẳng y=2x (d1) và y= -x+3 (d2)
a) tìm tọa độ giao điểm A của (d1) và (d2)
b) viết phương trình đường thẳng (d3) qua A và // với đường thẳng y= x+4 (d)
Giải chi tiết dùm mình với ạ :<
BÀI 1
để d1 và d2 // thì: m-3=-1(1) ; m khác 3 (2)
ta có: (1) <=> m=2 (3)
từ (2) và (3) => để d1//d2 thì m = 2