cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
a) Xét ∆ABM có DE//AM => \(\dfrac{AE}{AB}=\dfrac{DM}{BM}\)
Mà M là trung điểm của BC => BM=CM
=> \(\dfrac{AE}{AB}=\dfrac{DM}{CM}\)(1)
Xét ∆FDC có AM//FD => \(\dfrac{DM}{MC}=\dfrac{FA}{AC}\)(2)
Từ (1) và (2) => \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\) <=> AE.AC=AF.AB
b) Ta có: \(\dfrac{DF}{AM}=\dfrac{DC}{CM}\)
Mà \(\dfrac{DE}{AM}=\dfrac{BD}{BM}=\dfrac{BD}{CM}\)
=> \(\dfrac{DE+DF}{AM}=\dfrac{BD+DC}{MC}=\dfrac{BC}{MC}=2\)
=> \(DE+DF=2AM\)
Cho tam giác ABC từ điểm D bất kì trên cạnh BC ta dựng đường thẳng d song song với trung tuyến AM d cắt AB ở E cắt AC ở F
Chứng minh AE/AF=AB/AC
Cho tam giác \(ABC\), trung tuyến \(AM\). Điểm \(E\) bất kì thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EC}=\overrightarrow{0}\). Đường thẳng \(d\) qua \(E\) song song với \(AB\) cắt \(AM,BC\) lần lượt tại \(D,F\). \(G\) nằm trên cạnh \(AB\) sao cho diện tích hai tam giác \(BFG,ADE\) bằng nhau. Biết \(\overrightarrow{AG}=k\overrightarrow{AB}\). Tìm giá trị \(k\).
A. \(k=\dfrac{1}{3}\)
B. \(k=\dfrac{1}{2}\)
C. \(k=\dfrac{1}{4}\)
D. \(k=\dfrac{2}{3}\)
(Giải chi tiết giúp em ạ, em cảm ơn)
Bài này có nhiều cách làm, vẽ thêm đường phụ cũng được, dùng định lý Menelaus cũng được nhưng lớp 10 thì nên dùng vecto
Ta có:
\(k=\dfrac{AG}{AB}=1-\dfrac{BG}{AB}=1-\dfrac{DE}{AB}=1-\dfrac{2DE}{3EF}\)
Đặt \(\dfrac{AD}{AM}=m\)
\(\Rightarrow\overrightarrow{ED}=m\overrightarrow{EM}+\left(1-m\right)\overrightarrow{EA}\)
\(=m\left(\overrightarrow{EC}+\overrightarrow{CM}\right)+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)
\(=\dfrac{2}{3}m\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)
\(=\left(m-\dfrac{1}{3}\right)\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}\)
Lại có: \(\overrightarrow{EF}=\dfrac{2}{3}\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{CB}\)
Mà \(D,E,F\) thẳng hàng nên:
\(\left(m-\dfrac{1}{3}\right)\dfrac{2}{3}=\dfrac{1}{2}m.\dfrac{2}{3}\Leftrightarrow m=\dfrac{2}{3}\)
\(\Rightarrow\overrightarrow{ED}=\dfrac{1}{2}\overrightarrow{EF}\Rightarrow ED=\dfrac{1}{2}EF\)\(\Leftrightarrow\dfrac{DE}{EF}=\dfrac{1}{2}\)
\(\Rightarrow k=\dfrac{2}{3}\)
Cho tam giác ABC từ điểm D bất kỳ trên cạnh BC ta dựng đường thẳng d
song song với trung tuyến AM. Đường thẳng d cắt AB ở E cắt AC ở F.
a) chứng minh AE/AF=AB/AC
b) Chứng minh DE + DF =2AM
Ai Biết làm thì ghi chi tiết hộ nhé ! Cảm ơn nhiều.
cho tam giác abc có trung tuyến am m thuộc BC.Gọi I là điểm bất kì trên AM BI cắt CA tại D,CI cắt AB tại E. Đường thẳng qua A song song với BC cắt BI,CI tại N,P.
CM
A) AN=AP
B)DE//BC
cho tam giác ABC kẻ trung tuyến AM. Từ một điểm D bất kỳ trên cạnh BC ta kẻ đường thẳng song song AM, cắt AC tại E và AB tại F. Chứng minh: DE+DF=2AM
Câu hỏi của duy phạm - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Cho tam giác ABC đều M là điểm bất kì trên cạnh BC Qua M kẻ đường thẳng song song với AC cắt AB tại D Qua M kẻ đường thẳng song song với AB cắt AC tại E Gọi I là trung điểm của am Chứng minh ba điểm D,I,E thẳng hàng b) khi M di chuyển trên BC thì I di chuyển trên đường nào
đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc
mình đã trả lời nhé, bn vào trang cá nhân của mình để xem nhé
Cho tam giác ABC, trung tuyến AM. Gọi I là điểm bất kỳ trên cạnh BC. Đường thẳng qua I song song với AC cắt AB tại K. Đường thẳng qua I song song với AB cắt AC, AM theo thứ tự ở D, E.
CMR: DE = BK.
Cho tam giác ABCC có AM là đường trung tuyến. Qua O là điểm bất kì trên AM. Kẻ 1 đường thẳng song song với BC cắt AB, AC lần lượt ở D,E. CMR : OD=OE