Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tô Mì

Cho tam giác \(ABC\), trung tuyến \(AM\). Điểm \(E\) bất kì thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EC}=\overrightarrow{0}\). Đường thẳng \(d\) qua \(E\) song song với \(AB\) cắt \(AM,BC\) lần lượt tại \(D,F\)\(G\) nằm trên cạnh \(AB\) sao cho diện tích hai tam giác \(BFG,ADE\) bằng nhau. Biết \(\overrightarrow{AG}=k\overrightarrow{AB}\). Tìm giá trị \(k\).

A. \(k=\dfrac{1}{3}\)

B. \(k=\dfrac{1}{2}\)

C. \(k=\dfrac{1}{4}\)

D. \(k=\dfrac{2}{3}\)

(Giải chi tiết giúp em ạ, em cảm ơn)

Trên con đường thành côn...
20 tháng 7 2023 lúc 12:23

Bài này có nhiều cách làm, vẽ thêm đường phụ cũng được, dùng định lý Menelaus cũng được nhưng lớp 10 thì nên dùng vecto

Ta có:

\(k=\dfrac{AG}{AB}=1-\dfrac{BG}{AB}=1-\dfrac{DE}{AB}=1-\dfrac{2DE}{3EF}\)

Đặt \(\dfrac{AD}{AM}=m\)

\(\Rightarrow\overrightarrow{ED}=m\overrightarrow{EM}+\left(1-m\right)\overrightarrow{EA}\)

\(=m\left(\overrightarrow{EC}+\overrightarrow{CM}\right)+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)

\(=\dfrac{2}{3}m\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)

\(=\left(m-\dfrac{1}{3}\right)\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}\)

Lại có: \(\overrightarrow{EF}=\dfrac{2}{3}\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{CB}\)

Mà \(D,E,F\) thẳng hàng nên:

\(\left(m-\dfrac{1}{3}\right)\dfrac{2}{3}=\dfrac{1}{2}m.\dfrac{2}{3}\Leftrightarrow m=\dfrac{2}{3}\)

\(\Rightarrow\overrightarrow{ED}=\dfrac{1}{2}\overrightarrow{EF}\Rightarrow ED=\dfrac{1}{2}EF\)\(\Leftrightarrow\dfrac{DE}{EF}=\dfrac{1}{2}\)

\(\Rightarrow k=\dfrac{2}{3}\)


Các câu hỏi tương tự
Huỳnh Xuân Phương
Xem chi tiết
Cù Khắc Huy
Xem chi tiết
minh đúc
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Phạm Minh Phú
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Trương Đỗ Anh Quân
Xem chi tiết
hibiki
Xem chi tiết
Minh Hiếu
Xem chi tiết