Cho tam giác ABC , đường trung tuyến AM , điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. Qua A kẻ đường thẳng song song với BC, cắt các đường thẳng BE và CF lần lượt tại H và K . CM : EF song song với BC
tam giác ABC vuông tại A, AB>BC đường cao AH, trung tuyến AM. Vẽ AI vuông góc với AM; CI vuông góc với CB. ME song song AB ( E thuộc AC); AK song song BC ( K thuộc CI). a) AHCK là hình gì? b) Ch/m E thuộc HK; E thuộc MI c) BI cắt AH tại D. Ch/m AD=DH
Cho tam giác ABC, đường trung tuyến AM, điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. Qua A kẻ đường thẳng song song với BC cắt các tia BE và CF lần lượt tại K và H. Chứng minh: a) AH = AK. b) EF // BC.
Cho tam giác ABC, trung tuyến AM. Gọi I là điểm bất kỳ trên cạnh BC. Đường thẳng qua I song song với AC cắt AB tại K. Đường thẳng qua I song song với AB cắt AC, AM theo thứ tự ở D, E.
CMR: DE = BK.
Cho tam giác ABC đều M là điểm bất kì trên cạnh BC Qua M kẻ đường thẳng song song với AC cắt AB tại D Qua M kẻ đường thẳng song song với AB cắt AC tại E Gọi I là trung điểm của am Chứng minh ba điểm D,I,E thẳng hàng b) khi M di chuyển trên BC thì I di chuyển trên đường nào
cho hbh abcd có ac cắt bd tại o . m là trung điểm của bc .am cắt bd tại i . ci cắt ab tại e
a, cm e là trung điểm của ab
b, qua a kẻ đường thẳng song song với ce cắt bd tại k . dm bi=ik=kd
B1 : Cho tam giác ABC, lấy điểm O bất kì trong tam giác đó. Vẽ các tia AO,BO,CO cắt BC,AC,AB lần lượt tại P,Q và R
CM: \(\frac{OA}{AP}+\frac{OB}{BQ}+\frac{OC}{CR}=2\)
B2: Cho tam giác ABC, vẽ trung tuyến AM. Điểm I bất kì trên AM, F là giao điểm của BI và AC. E là giao điểm của CI và AB. Từ M kẻ đường thẳng song song với IC cắt AB tại H và kẻ đường thẳng song song với IB cắt AC tại K
CM a, EF\(//\)HK
b, EF\(//\)BC
Các bạn giúp mk nha (Có hình càng tốt)
Cho tam giác ABC, đường trung tuyến AM. Qua điểm D nằm trên cạnh BC, vẽ đường thẳng song song với AM cắt AB, AC lần lượt tại E, F.
a. CMR: DE + DF = 2AM.
b. Đường thẳng qua A song song với BC cắt EF tại N. CMR: N là trung điểm của EF.
Cho tam giác ABC, điểm I nằm trong tam giác, các tia AI, BI, CI cắt các cạnh BC, AC, AB theo thứ tự ở D, E, F. Qua A kẻ đường thẳng song song với BC cắt tia CI tại H và cắt tia BI tại K. Chứng minh:
a) A K B D = H A D C ;
b) A F B F + A E C E = A I I D .