Cho tgABC vuông tại A, đường cao AH; biết AB=9cm; AC=12cm.
a) Tính BC, AH
b) Tính số đo góc B (làm tròn đến phút)
c) Gọi M là trung điểm BC. Đường thẳng vuông góc với BC tại M cắt AC tại D.
CMR: 2.AC.DC=BC2
Cho tgABC vuông tại A, đường cao AH. Vẽ HM vg^AB; HN vg^ AC
Biết AH=2cm,BC=5cm.Tính diện tích AMHN
Cho tam giác ABC cân tại A, trung tuyến AM, O là trung điểm của AM. Tia BO cắt AC tại D, CO cắt AB tại E. Cho biết diện tích tam giác ADE=a^2
Tính diện tích tam giác ABC
Cho tam giác ABC vuông góc tại A, có AB=4,5cm, BC=7,5cm. Kẻ đường cao AH(H thuộc BC) phân giác của gócB cắt AC tại D, cắt AH tại K.
a) Tinh AD;AC;DC
b)C/m tgABC đồng dạngtg hBA từ đó sumy ra AH=AC.BH.
c)Tính độ dài các đoạn thẳng AH,BH,CH
cho tgABC vuông tại A,đường cao AH,biết AB=5cm,AC=12cm
1)tính BC,AH
2)tia phân giác góc ABCcắt AH tại E và cắt AC tại F,chứng minh:
a)tgABF~tgHBE b)tgAEF cân c)EH.FC=AE.AF
1. Xét \(\Delta ABC\) vuông tại A ( gt )
\(\Rightarrow\) AB2 + AC2 = BC2 ( đ/lý Pytago )
Mà AB = 5cm ; AC = 12cm ( gt )
\(\Rightarrow\) 52 + 122 = BC2
25 + 144 = BC2
169 = BC2
\(\Rightarrow\) BC = \(\sqrt{169}\) = 13cm
Có AH là đường cao ( gt )
\(\Rightarrow\) SAHB = \(\frac{1}{2}\)AH.HB (1)
Có \(\Delta\) ABC vuông tại H ( AH là đường cao )
\(\Rightarrow\) SAHC = \(\frac{1}{2}\)AH.HC (2)
Từ (1) và (2)
\(\Rightarrow\) SABC = SAHB + SAHC
= \(\frac{1}{2}AH.BC+\frac{1}{2}AH.HC\)
= \(\frac{1}{2}AH\left(HB+HC\right)\)
Mà CH + BH = BC ( H \(\in\) BC )
\(\Rightarrow\) SABC = \(\frac{AH.BC}{2}\)
Mà SABC = \(\frac{AB.AC}{2}\) ( \(\Delta\) ABC vuông tại A )
\(\Rightarrow\) AB . AC = AH . BC
Mà AB = 5cm ; AC = 12cm ( gt )
BC = 13cm ( cmt )
\(\Rightarrow\) 5 . 12 = AH . 13
60 = AH . 13
\(\Rightarrow\) AH = \(\frac{60}{13}\approx4,6cm\)
cho tam giác abc có 3 góc nhọn, hai đường cao BE, CF, AH cắt nhau tại H: a)AE.AC=AF.AB . b) CMR: Tam giác(tg)AEF~tgABC. c)CMR: tam giác AEF đồng dạng tam giác CED từ đó suy ra: Tia EH là phân giác góc FED
a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạg vơi ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vơi ΔABC
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
Đề 1:
Cho tam giác ABC vuông tại A có AB = 30cm, đường cao AH = 24cm.
a) Tính BH, BC, AC.
b) Đường thẳng vuông góc với AB tại B cắt tia AH tại D. Tính BD
Đề 2:
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 15cm, BH = 9cm.
a) Tính AC, BC, và đường cao AH.
b) Gọi M là trung điểm của BC, tính diện tích của tam giác AHM.
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
3/ Cho ∆ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BD, CE với đường tròn. Chứng minh:
a) Ba điểm D, A, E thẳng hàng
b) DE tiếp xúc với đường tròn đường kính BC
4/ Cho ∆ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BM, CN với đường tròn. Chứng minh:
a) Ba điểm M, A, N thẳng hàng
b) MN tiếp xúc với đường tròn đường kính BC
3/
a) theo tính chất 2 tiếp tuyến cắt nhau
ta có : DAB = BAH và HAC = CAE
DAH + HAE = 2(BAH + HAC) = 2.90 = 180
vậy D , A , E thẳng hàng
b,
b) gọi M là trung diểm của BC
mà DA = AE = R
⇒ MA là đường trung bình của hình thang BDEC nên MA // DB ⇒ MA ⊥ DE
mà MA = MB = MC nên MA là bán kính của đường tròn có đường kính BC
vậy DE là tiếp tuyến của đường tròn có đường kính BC
⇔ DE tiếp xúc với đường tròn có đường kính BC (đpcm)
bài 4 làm tương tự
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
1. Cho ∆ABC vuông tại A có AB=3 ,AC=4 kẻ đường cao AH . tính độ dài cạnh BC ,AH, HB ,HC 2. CHO ∆ABC vuông tại A đường cao AH . Biết AH=2,BH=1 . Tính độ dài các của ∆ABC 3. Cho hình chữ nhật ABCD , từ A kẻ đường thẳng vuông góc với BD và CD lần lượt tại H và E cho AB =4cm , AD=3cm a, Tính độ dài đường chéo BD của hình chữ nhật ABCD b; Tính AH
1.
\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)
2.
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)
Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)