cho 4 số a1 ; a2 ; a3 ; a4 khác 0
thỏa mãn a22 =a1 .a3 a32 = a2 .a4
chứng minh
\(\frac{a1^3+a2^3+a3^3}{a2^3+a3^3+a4^3}\)\(=\frac{a1}{a4}\)
1.Giả sử trong các ô A1, B1 lần lượt chứa các số -4, 3. Khi đó =AVERAGE(A1,B1,4) cho kết quả là .............
2.Giả sử trong các ô A1, B1 lần lượt chứa các số -4, 3. Khi đó =SUM(A1,B1) cho kết quả là .............
3.Trong ô D5 có công thức =B5+C5. Sao chép công thức trong ô D5 vào ô D6, công thức trong ô D6 được tự động điều chỉnh thành ..........................
4.Giả sử trong các ô A1, B1 lần lượt chứa các số -4, 3. Khi đó =SUM(A1,B1,-5) cho kết quả là .............
cứu mình lần 2 với:(((
tìm 4 số tự nhiên a1<a2<a3<a4 sao cho tất cả các số d1=a1-a3,d2=a3-a2,d3=a2-a1,d4=a4-a2,d5=a3-a1,d6=a4-a1 đều là số nguyên tố trong đó có thể có các số nguyên tố bằng nhau
chon dai di thoi
a1=1
a2=3
=>d3=2
d1=a1-a3 de sai roi a1<a3 khong co d1
Cho a1; a2; b1; b2 là 4 số dương có a1.a2=b1.b2
CMR: (a1/b1)+(a2/b2)>=2
Dễ vậy mà ko làm đc àk
\(a_1.a_2=b_1.b_2\Rightarrow\frac{a_1}{b_1}=\frac{b_2}{a_2}\)
\(\Rightarrow\frac{a_1}{b_1}+\frac{a_2}{b_2}=\frac{b_2}{a_2}+\frac{a_2}{b_2}\ge2\sqrt{\frac{b_2}{a_2}.\frac{a_2}{b_2}}=2\) (AM - GM)
có a1.a2=b1.b2
=> a1/b1=b2/a2
có \(\frac{a1}{b1}+\frac{a2}{b2}=\frac{b2}{a2}+\frac{a2}{b2}\)
áp dụng bất đẳng thức cosi cho 2 số dương có
\(\frac{b2}{a2}+\frac{a2}{b2}\ge2\sqrt{\frac{b2}{a2}.\left(\frac{a2}{b2}\right)}=2\)(đpcm)
Cho 4 số a1, a2, a3, a4 khác 0 sao cho a2 ^2 = a1.a3 và a3 ^2 =a2.a4
CMR : (a1^3 + a2^3 + a3^3)/(a2^3 + a3^3 + a4^3 ) = a1/a4
Ta có:
\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)
Cho 4 số khác ko : a1 ; a2 ; a3 ; a4 thỏa mãn
a2^2 = a1.a3 ; a3^2 = a2.a4
CMR :a1^3+a2^3+a3^3/a2^3+a3^3+a4^4 =a1/a4
Ta có: \(a_2^2=a_1.a_3\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\) ; \(a_3^2=a_2.a_4\)\(\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)(1)
Lại có: \(\frac{a_1^3}{a_2^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Cho 51 số nguyên dương bất kì . Cmr : luôn chọn được 4 số a1 , a2 , a3, a4 trong 50 số đó để ( a2-a1 )*(a4-a3) chia hết cho 2352
4.1. Giả sử trong các ô A1, B1 lần lượt chứa các số -4, 3. Em hãy cho biết kết quả của các công thức tính sau: | ||
Câu | Hàm | Kết quả |
a | = SUM(A1, B1) |
|
b | = SUM(A1,B1,B1) |
|
c | = SUM(A1, B1, -5) |
|
d | = SUM(A1, B1, 2) |
|
e | =SUM(A1, SUM(A1, B1, 10)) |
|
f | =MAX(A1,B1) |
|
Cho 4 số khác 0 là a1,a2,a3,a4 thỏa a1+a2+a3=100 và a2 + a3 +a4 = 50 và \(a2^2\)= a1.a3; \(a3^2\)=a1.a4. Tìm tỉ số \(\dfrac{a1}{a4}\)
Cho 4 số khác 0 là a1,a2,a3,a4 thỏa a1 + a2 + a3 +a4 = 50 và \(^{a2^2}\) = a1.a3; \(a3^2\)=a1.a4. Tìm tỉ số \(\dfrac{a1}{a4}\)
Ta có:
\(\left\{{}\begin{matrix}a_2^2=a_1.a_3\\a^2_3=a_2.a_4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a_2}{a_3}=\dfrac{a_1}{a_2}\\\dfrac{a_3}{a_4}=\dfrac{a_2}{a_3}\end{matrix}\right.\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)
Áp dụng tính chất dãy tỉ sô bằng nhau ta có:
\(\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}=\dfrac{a_1}{a_4}\left(đpcm\right)\)
Chúc bạn học tốt!
Cho 4 số khác 0 là a1,a2,a3,a4 thỏa a1+a2+a3=100 và a2 + a3 +a4 = 50 và \(a2^2\) = a1.a3; \(a3^2\)=a1.a4. Tìm tỉ số \(\dfrac{a1}{a4}\)