Cho tam giác ABC trực tâm H nội tiếp đường tròn (O ; R). Chứng minh rằng
AH2 + BC2 = BH2 + AC2 = CH2 + AB2 = 4R2
Cho tam giác nhọn ABC,trực tâm H,nội tiếp đường tròn (o).Gọi H là trực đối xứng với A qua BC,Cm :a,Tứ giác ABHC nội tiếp ,b,Bán kính đường tròn ngoại tiếp tam giác BHC,bằng bán kính đường tròn ngoại tiếp ABC
Cho tam giác ABC nhọn nội tiếp (O) có góc BAC =60, H là trực tâm. Goi I là tâm đường tròn nội tiếp tam giác ABC. Chung minh IO =IH
cho tam giác nhọn ABC nội tiếp đường tròn tâm O, gọi H là trực tâm, I là tâm đường tròn nội tiếp tam giác
a) AI là tia phân giác góc OAH
b) cho góc BAC= 60 độ , chứng minh IO=IH
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm, i là tâm đường tròn nội tiếp tam giác.
a) CM: AI là phân giác của góc OAH
b) cho góc ABC = 6o độ, CM: IO=IH
CHO tam giác ABC có 3 góc nhọn (AB<AC) NỘI TIẾP tam giác đường tròn (o) gọi H là trực tâm và M, N, P lần lượt là chân đường cao kẻ từ các đỉnh A, B, C của tam giác ABC.
a) CM:các tứ giác APHN và BPNC nội tiếp
b) CM; H LÀ tâm đường tròn nội tiếp tam giác MNP
VẼ hình hộ mk vs ạ
Cho tam giác nhọn ABC, trực tâm H, nội tiếp đường tròn (O). Gọi H' là điểm đối xứng của H qua BC. Chứng minh:
a) Tứ giác ABH'C là tứ giác nội tiếp
b) Bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác ABC
c) OA \(\perp\) B'C'
cho tam giác ABC nhọn nội tiếp đường tròn O . Gọi H là trực tâm , I là tâm đường tròn nội tiếp tam giác
a) CM : AI là phân giác góc OAH
b) Cho góc BAC =60 độ . CM : IO =IH
Cho I, O lần lượt là tâm đường tròn nội tiếp, ngoại tiếp của tam giác ABC với A ^ = 60 0 . Gọi H là trực tâm của ∆ABC. Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn
Chứng minh được B I C ^ = 120 0
=> B O C ^ = 2 B A C ^ = 120 0 => B H C ^ = 180 0 - 60 0 = 120 0 (góc nội tiếp và góc ở tâm)
=> H, I, O cùng nhìn BC dưới góc 120 0 nên B, C, O, I, H cùng thuộc một đường tròn
Cho tam giác ABC có các góc là góc nhọn và nội tiếp đường tròn tâm (O). Tiếp tuyến của đường tròn tâm (O) tại B,C cắt nhau tại D
a) Chứng minh OCDB nội tiếp
b) Gọi H là trực tâm của tam giác ABC. M là trung điểm của BC
Chứng minh AH=2OM
a) Xét tứ giác OCDB có
\(\widehat{OBD}+\widehat{OBC}=180^0\)
Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC nội tiếp đường tròn tâm O, H là trực tâm của tam giác . AH cắt BC tại I và cắt đường tròn tâm O tại M.
cm HI = IM