Cho tam giác ABC trực tâm H nội tiếp đường tròn (O ; R). Chứng minh rằng
AH2 + BC2 = BH2 + AC2 = CH2 + AB2 = 4R2
Cho tam giác nhọn ABC,trực tâm H,nội tiếp đường tròn (o).Gọi H là trực đối xứng với A qua BC,Cm :a,Tứ giác ABHC nội tiếp ,b,Bán kính đường tròn ngoại tiếp tam giác BHC,bằng bán kính đường tròn ngoại tiếp ABC
Cho tam giác ABC nhọn nội tiếp (O) có góc BAC =60, H là trực tâm. Goi I là tâm đường tròn nội tiếp tam giác ABC. Chung minh IO =IH
cho tam giác nhọn ABC nội tiếp đường tròn tâm O, gọi H là trực tâm, I là tâm đường tròn nội tiếp tam giác
a) AI là tia phân giác góc OAH
b) cho góc BAC= 60 độ , chứng minh IO=IH
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm, i là tâm đường tròn nội tiếp tam giác.
a) CM: AI là phân giác của góc OAH
b) cho góc ABC = 6o độ, CM: IO=IH
CHO tam giác ABC có 3 góc nhọn (AB<AC) NỘI TIẾP tam giác đường tròn (o) gọi H là trực tâm và M, N, P lần lượt là chân đường cao kẻ từ các đỉnh A, B, C của tam giác ABC.
a) CM:các tứ giác APHN và BPNC nội tiếp
b) CM; H LÀ tâm đường tròn nội tiếp tam giác MNP
VẼ hình hộ mk vs ạ![]()
Cho tam giác nhọn ABC, trực tâm H, nội tiếp đường tròn (O). Gọi H' là điểm đối xứng của H qua BC. Chứng minh:
a) Tứ giác ABH'C là tứ giác nội tiếp
b) Bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác ABC
c) OA \(\perp\) B'C'
a: H' đối xứng H qua BC
=>BC là đường trung trực của H'H
=>BH=BH', CH=CH'
Xét ΔBHC và ΔBH'C có
BH=BH'
CH=CH'
BC chung
Do đó: ΔBHC=ΔBH'C
=>\(\hat{BHC}=\hat{BH^{\prime}C}\)
Gọi D là giao điểm của BH và CA, E là giao điểm của CH và AB
H là trực tâm của ΔABC
=>BH⊥CA tại D, CH⊥AB tại E
Xét tứ giác AEHD có \(\hat{AEH}+\hat{ADH}=90^0+90^0=180^0\)
nên AEHD là tứ giác nội tiếp
=>\(\hat{EHD}+\hat{EAD}=180^0\)
mà \(\hat{EHD}=\hat{BHC}\) (hai góc đối đỉnh)
và \(\hat{BHC}=\hat{BH^{\prime}C}\)
nên \(\hat{BAC}+\hat{BH^{\prime}C}=180^0\)
=>ABH'C là tứ giác nội tiếp
b: Xét ΔHBC có \(\frac{BC}{\sin BHC}=2R_1\)
=>\(\frac{BC}{sin\left(180^0-BAC\right)}=2R_1\)
=>\(2R_1=\frac{BC}{\sin BAC}\) (1)
Xét ΔABC có \(\frac{BC}{\sin BAC}=2R_2\) (2)
Từ (1),(2) suy ra \(R_1=R_2\)
=>Bán kính đường tròn ngoại tiếp ΔBHC bằng với bán kính đường tròn ngoại tiếp ΔABC
cho tam giác ABC nhọn nội tiếp đường tròn O . Gọi H là trực tâm , I là tâm đường tròn nội tiếp tam giác
a) CM : AI là phân giác góc OAH
b) Cho góc BAC =60 độ . CM : IO =IH
Cho I, O lần lượt là tâm đường tròn nội tiếp, ngoại tiếp của tam giác ABC với A ^ = 60 0 . Gọi H là trực tâm của ∆ABC. Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn

Chứng minh được B I C ^ = 120 0
=> B O C ^ = 2 B A C ^ = 120 0 => B H C ^ = 180 0 - 60 0 = 120 0 (góc nội tiếp và góc ở tâm)
=> H, I, O cùng nhìn BC dưới góc 120 0 nên B, C, O, I, H cùng thuộc một đường tròn
Cho tam giác ABC nội tiếp đường tròn tâm O, H là trực tâm của tam giác . AH cắt BC tại I và cắt đường tròn tâm O tại M.
cm HI = IM
Cho tam giác ABC nội tiếp đường tròn tâm O, H là trực tâm của tam giác . AH cắt BC tại I và cắt đường tròn tâm O tại M.
cm HI = IM
Goi F la giao diem BH va AC
ta co : goc IAC+goc ACI=90 ( tam giac AIC vuong tai I)
goc FBC+goc ACI=90 ( tam giac BFC vuong tai F)
--> goc IAC=gocFBC
ma goc IAC=goc CBM ( 2goc nt cung chan cung MC cua (O))
nen FBC=CBM--> BI la tia p.g goc HBM
xet tam giac BHM ta co
BI la duong p.g va BI la duong cao ( AI vuong goc BC tai I)
--> tam giac BHM can tai B
ma BI la duong cao
nen BI la duong trung tuyen
-> I la trung diem HM
-> HI=IM
CAch nay dung k co Loan?
Kẻ đường kính AD
*) Chứng minh BHCD là hbh ; từ đó suy ra BH = CD
+) Vì tam giác ABD nội tiếp đường tròn (O) đường kính AD => tam giác ABD vuông tại B => DB vuông góc với AB
Mà CH vuông góc với AB => CH // BD
+) Tương tự ta có AC vuông góc với DC mà BH vuông góc với AC => DC// BH
=> tứ giác BHCD là hbh => BH = CD (1)
*) Tam giác AIB vuông tại I => góc BAM + IBA = 90o
Mặt khác, tam giác ABD vuông tại B => góc ABD = IBA + CBD = 90o
=> góc BAM = CBD
Hơn nữa; góc BAM là góc nội tiếp (O) chắn cung BM; góc CBD là góc nt (O) chắn cung CD
=> dây BM = dây CD (2)
Từ (1)(2) => BH = BM => tam giác BHM cân tại B có BI là đuơng cao nên đông thời là đường trung tuyến => I là trung điểm của HM
=> IH = IM