a: H' đối xứng H qua BC
=>BC là đường trung trực của H'H
=>BH=BH', CH=CH'
Xét ΔBHC và ΔBH'C có
BH=BH'
CH=CH'
BC chung
Do đó: ΔBHC=ΔBH'C
=>\(\hat{BHC}=\hat{BH^{\prime}C}\)
Gọi D là giao điểm của BH và CA, E là giao điểm của CH và AB
H là trực tâm của ΔABC
=>BH⊥CA tại D, CH⊥AB tại E
Xét tứ giác AEHD có \(\hat{AEH}+\hat{ADH}=90^0+90^0=180^0\)
nên AEHD là tứ giác nội tiếp
=>\(\hat{EHD}+\hat{EAD}=180^0\)
mà \(\hat{EHD}=\hat{BHC}\) (hai góc đối đỉnh)
và \(\hat{BHC}=\hat{BH^{\prime}C}\)
nên \(\hat{BAC}+\hat{BH^{\prime}C}=180^0\)
=>ABH'C là tứ giác nội tiếp
b: Xét ΔHBC có \(\frac{BC}{\sin BHC}=2R_1\)
=>\(\frac{BC}{sin\left(180^0-BAC\right)}=2R_1\)
=>\(2R_1=\frac{BC}{\sin BAC}\) (1)
Xét ΔABC có \(\frac{BC}{\sin BAC}=2R_2\) (2)
Từ (1),(2) suy ra \(R_1=R_2\)
=>Bán kính đường tròn ngoại tiếp ΔBHC bằng với bán kính đường tròn ngoại tiếp ΔABC