hình bình hành ABCD
AC cắt BD tại O
AM=CD(M thuộc AB; P thuộc CD)
AQ=CN(Q thuộc AD; N thuộc BC)
chứng minh
AC,BD,MP,NQ đồng qui
Cho hình bình hành ABCD. M thuộc AB, N thuộc CD sao cho AM=CN. AC cắt BD tại O. MD cắt AN tại E. MC cắt BN tại F. CMR:
a) AN=CM; AN song song CM
b) AC, BD, MN đồng quy
c) ME=NF và E, O, F thẳng hàng
B1 a) Xét ∆AHD và ∆CKB có: + góc AHD = góc CKB = 90độ
+ AD = BC
+ góc ADH = góc CBK(so le trong) => ∆AHD = ∆CKB(c.g.c) => AH = CK
Xét tứ giác AHCK có AH // CK(cùng ⊥ BD) và AH = CK => AHCK là hbh.
b) Do AHCK là hình bình hành => AK // CH => AM // CN, do ABCD là hình bình hành => AD // BC => AN // BM. Xét tứ giác AMCN có AM // CH và AN // BM => AMCN là hình bình hành => AN = CM.
c) Nối A -> C,M -> N do O là trung điểm HK => O là trung điểm AC => O là trung điểm MN => O;M;N thẳng hàng (do 2 đường chéo của hbh cắt nhau tại trung điểm mỗi đường)
B2:
B3: đề sai.
B4: Kẻ EI // AB(I thuộc BC) Nối I -> F; I -> K; F -> C. => ta chứng minh được ADCI là hbh (bạn tự chứng minh) Dựa theo tính chất đối xứng ta chứng minh được: ∆FIC = ∆KIC, ∆FIC có FC = IC ( = DE) và góc C = 60độ => ∆FIC đều => ∆KIC đều => góc CIK = 60độ. Do ADCI là hbh => góc AIC = góc D = 120 độ => góc CIK + góc AIC = 60độ + 120 độ = 180độ => A;I;K thẳng hàng, mà AI // AB (cách kẻ) => AK // AB(đpcm)
Cho hình bình hành ABCD, 2 đường chéo cắt nhau tại O. Kẻ AH vuông góc BD, CD vuông góc BD (AC ko vuông góc BD)
a) C/m tứ giác AHCK là hình bình hành
b)Biết AH cắt CD tại M, CK cắt AB tại N. C/m O là trung điểm của MN
a) Xét hai tam giác vuông ADH và BCK có:
AD = BC (tính chất hình bình hành)
B1ˆ=D2ˆB1^=D2^ (slt, AB // CD)
Vậy: ΔADH=ΔBCK(ch−gn)ΔADH=ΔBCK(ch−gn)
⇒⇒ AH = CK (1)
Chứng minh tương tự ta được: ΔABK=ΔCDH(ch−gn)ΔABK=ΔCDH(ch−gn)
⇒⇒ AK = CH (2)
Từ (1) và (2) suy ra: AHCK là hình bình hành
b) O là giao điểm của AC và BD thì O là trung điểm của AC (tính chất đường chéo hình bình hành)
AHCK là hình bình hành (cmt) ⇒⇒ HK đi qua trung điểm O của đường chéo AC
Vậy H, O, K thẳng hàng.
P.s:Mìh vẽ hình hơi xấu ;))
1,Cho hình thang ABCD,2 cạnh đáy AB và CD.2 đường chéo cắt nhau tại O.biết rằng OA=2cm,OC=6cm,OB=4cm.OD?
2,cho hình bình hành ABCD.Cac điểm M,N lần lượt thuộc cạnh AB và CD sao cho AM=CN.Chứng minh
a,AMCN là hình bình hành
b,3 đường thẳng AC,BD,MN đồng quy
3.Cho tứ giác ABCD có AB vuông góc với BD,AC vuông góc với CD.2 đường chéo cắt nhau tại I.chứng minh IA.IC=IB.ID
cho hình bình hành ABCD . Lấy M thuộc cạnh AB , N thuộc cạnh CD sao cho AM = CN
a) chứng minh DM//BN
b) DM cắt AC tại I, BN cắt AC tại K . Chứng minh tứ giác MINK là hình bình hành
c) Gọi O là giao điểm của AC và BD . Chứng minh M đối xứng vs N qua O
Cho hình bình hành ABCD, 2 đường chéo AC, BD cắt nhau tại O, 1 đường thẳng qua O cắt AB, CD theo thứ tự ở M và N
Cm: DMBN là hình bình hành
b) AC cắt BD tại O. Chứng minh E,O,F thẳng hàng.
c) Hình bình hành ABCD có điều kiện gì thì tứ giác DEBR là hình thoi
Giúp mik với mng ơi
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Vì DEBFlà hình bình hành
nên DB cắt EF tại trung điểm của mỗi đường(1)
Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra E,O,F thẳng hàng
c: Để DEBF là hình thoi thì DE=BE=AB/2
Xét ΔDAB có
DE là trung tuyến
DE=AB/2
Do đo:ΔDAB vuông tại D
=>DA vuông góc với DB
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
Cho hình bình hành ABCD (AB//CD) có AB=7,5;CD=12 gọi M là trung điểm của CD, AM cắt BD tại E và BM cắt AC tại F.Chứng minh rằng
a,EF//AB
b,Tính EF
Cho hình bình hành ABCD (AB//CD) có AB=7,5;CD=12 gọi M là trung điểm của CD, AM cắt BD tại E và BM cắt AC tại F.Chứng minh rằng
a,EF//AB
b,Tính EF