Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Diệu Hằng
Xem chi tiết
c ngoc nguyen
16 tháng 7 2016 lúc 16:34

da co hinh ve chua vay

Phạm Diệu Hằng
17 tháng 7 2016 lúc 7:53

rồi bn nak, bn làm ơn giúp mình vs

Lê Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2020 lúc 18:26

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 20:00

Xét ΔABD có AB=AD

nên ΔABD cân tại A

Ta có: ΔABD cân tại A

mà AK là đường trung tuyến

nên AK là phân giác của góc BAD

Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

=>KB=KD

BaoKhanh Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 17:46

a: Xét ΔABM và ΔADM có 

AB=AD

BM=DM

AM chung

Do đó: ΔABM=ΔADM

b: Ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

c: Ta có: \(\widehat{ABD}+\widehat{EBD}=180^0\)

\(\widehat{ADB}+\widehat{BDC}=180^0\)

mà \(\widehat{ABD}=\widehat{ADB}\)

nên \(\widehat{EBD}=\widehat{BDC}\)

Xét ΔAEC có 

AB/AE=AD/AC

Do đó: BD//CE

Xét tứ giác BDCE có BD//CE
nên BDCE là hình thang

mà \(\widehat{EBD}=\widehat{BDC}\)

nên BDCE là hình thang cân

Suy ra: DE=BC

Đỗ Hoàng Linh
Xem chi tiết
Đỗ Hoàng Linh
Xem chi tiết
Hoàng Thị Yến Nhi
Xem chi tiết
HUYNH HUU HUNG
Xem chi tiết
Trang Nhung Luu
Xem chi tiết
BTS
Xem chi tiết