Cho ΔABC, M là điểm trên cạnh AB sao cho AM = \(\frac{1}{4}\)AB; N là trung điểm của AC và D là 1 điểm nằm trên tia đối của tia CB sao cho CD = \(\frac{1}{2}\)BC. Chứng minh rằng ba điểm M, N, D thẳng hàng.
Cho ΔABC có BC = a. Trên cạnh AB lấy điểm M sao cho MB =\(\frac{1}{4}\)AB. Trên cạnh AC lấy điểm N sao cho NC = \(\frac{1}{4}\)AC. Tính MN theo a .
Ai giúp e vs ạ, 3 **** luôn nak
1. Cho ΔABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC
a) Chứng minh rằng ΔABC = ΔACM và AM là đường trung trực của BC
b) Trên tia đối của tia MA , lấy điểm D sao cho MD = MA . Chứng minh AB //CD
Vẽ hình giùm em
a)
Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có
MB=MC(M là trung điểm của BC)
AM=DM(gt)
Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)
⇒\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
Cho ΔABC (AB < AC), trên cạnh AC lấy điểm D sao cho AD=AB, gọi M là trung điểm của BD, kéo dài AM cắt BC tại K. Chứng minh KB=KD
Xét ΔABD có AB=AD
nên ΔABD cân tại A
Ta có: ΔABD cân tại A
mà AK là đường trung tuyến
nên AK là phân giác của góc BAD
Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
=>KB=KD
cho ΔABC, AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Nối B với D. Gọi M là trung điểm của BD.
A. chứng minh ΔABM=ΔADM.
B.Chứng minh: AM là tia phân giác của góc BAC.
C.Trên tia AB lấy điểm E sao cho AE=AC.Chứng minh DE=BC
D.Gọi I là giao điểm của BC và DE. Chứng minh A,M,I thẳng hàng
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
c: Ta có: \(\widehat{ABD}+\widehat{EBD}=180^0\)
\(\widehat{ADB}+\widehat{BDC}=180^0\)
mà \(\widehat{ABD}=\widehat{ADB}\)
nên \(\widehat{EBD}=\widehat{BDC}\)
Xét ΔAEC có
AB/AE=AD/AC
Do đó: BD//CE
Xét tứ giác BDCE có BD//CE
nên BDCE là hình thang
mà \(\widehat{EBD}=\widehat{BDC}\)
nên BDCE là hình thang cân
Suy ra: DE=BC
Bài 4: (0,5 điểm) Cho ΔABC biết A=420, C=670. Tính
Bài 5: (3 điểm) Cho ΔABC có ba góc nhọn (AB < AC). Gọi M là trung điểm của BC. Vẽ tia AM, trên tia AM lấy điểm D sao cho MA = MD.
a/ Chứng minh ΔAMB = ΔDMC
b/ Chứng minh AB // CD
c/ kẻ tia Ax // BC (Ax và BC cùng thuộc nữa mặt phẳng bờ là AB) .Trên tia Ax lấy điểm N sao cho AN = BC . Chứng minh D,C,N thẳng hàng.
Bài 4: (0,5 điểm) Cho ΔABC biết A=420, C=670. Tính B
Bài 5: (3 điểm) Cho ΔABC có ba góc nhọn (AB < AC). Gọi M là trung điểm của BC. Vẽ tia AM, trên tia AM lấy điểm D sao cho MA = MD.
a/ Chứng minh ΔAMB = ΔDMC
b/ Chứng minh AB // CD
c/ kẻ tia Ax // BC (Ax và BC cùng thuộc nữa mặt phẳng bờ là AB) .Trên tia Ax lấy điểm N sao cho AN = BC . Chứng minh D,C,N thẳng hàng.
Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)
Cho hình chữ nhật ABCD có diện tích là \(^{240m^2}\).M là điểm trên cạnh AB sao cho AM=\(\frac{1}{4}\)AB;N là điểm trên cạnh DC sao cho DN =\(\frac{5}{12}\) DC.Tính diện tích hình thang AMND
Mình cần gấp lắm.Giúp với
Cho ΔABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của ΔABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy hai điểm M, N sao cho AM = CN
a. Chứng minh ∠OAB = ∠OCA
b. Chứng minh ΔAOM = ΔCON
c. Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của ∠MON
Cho tam giác ABC trên cạnh BC lấy M sao cho BM = \(\frac{1}{4}\) BC .trên AB lấy K sao cho AK bằng 1/5 AM .Gọi H là giao điểm của CK và AB tính \(\frac{AH}{HB}\); \(\frac{AH}{AB}\)