Cho tứ giác ABCD có AD=BC. Gọi N là trung điểm của CD; M là trung điểm của AB. MN cắt DA và CB kéo dài lần lượt tại E và F .Chứng minh:
Góc E=Góc F
(Có vẽ hình)
Cho tứ giác ABCD có M là trung điểm AB ; E là trung điểm của BC ; N là trung điểm CD ; F là trung điểm của AD .
a) Chứng minh MENF là hình bình hành
b) Gọi P là điểm thuộc BC ( PB khác PC ) , Q là điểm thuộc AD ( QA khác QD ). Biết MNPQ là hình bình hành . Hỏi tứ giác ABCD là hình gì ? Tại sao ?
Cho tứ giác ABCD có AD=BC. Gọi M, N lần lượt là trung điểm của AB, CD. Cho AD cắt MN tại E, BC cắt MN tại F. Chứng minh ABM=BFN
cho tứ giác ABCD , gọi M,N lần lượt là trung điểm của các cạnh AD , BC . CMR MN ≤ AB+CD/2
cho tứ giác ABCD , gọi M,N lần lượt là trung điểm của các cạnh AD , BC . CMR MN ≤ AB+CD/2
Gọi K là trung điểm BD
Xét tam giác ABD có:
Mlà trung điểm AD
K là trung điểm BD
=> MK là đường trung bình
\(\Rightarrow MK=\dfrac{1}{2}AB\left(1\right)\)
Xét tam giác BDC có:
K là trung điểm BD
N là trung điểm BC
=> NK là đường trung bình
\(\Rightarrow NK=\dfrac{1}{2}DC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow MK+NK=\dfrac{1}{2}\left(BC+DC\right)\)
Mà \(MK+NK\ge MN\)(bất đẳng thức trong tam giác KMN)
\(\Rightarrow MN\le\dfrac{AB+DC}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow MK+NK=MN\)
\(\Leftrightarrow\) K là trung điểm MN
Cho tứ giác \(ABCD\) , gọi \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Biết \(MP=\dfrac{1}{2}\left(AD+BC\right)\), \(NQ=\dfrac{1}{2}\left(AB+CD\right)\). \(CMR:\) tứ giác \(ABCD\) là hình bình hành.
Trên tia đối của PB lấy H sao cho BP = PH
ΔBPC và ΔHPD có:
BP = HP (cách vẽ)
\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)
PC = PD (gt)
Do đó, ΔBPC=ΔHPD(c.g.c)
=> BC = DH (2 cạnh t/ứng)
và \(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD
ΔABH có: M là trung điểm của AB (gt)
P là trung điểm của BH (vì HP = BP)
Do đó MP là đường trung bình của ΔABH
\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH
\(\Rightarrow2MP=AH\)
Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)
\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))
\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)
Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)
Do đó, \(AD+DH=AH\)
=> A,D,H thẳng hàng
Mà HD // BC (cmt) nên AD // BC
Tương tự: AB // CD
Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)
Do đó, ABCD là hình bình hành
Cho tứ giác ABCD có AD=BC. Gọi M,N,P,Q lần lượt là trung điểm của AB, AC, CD, BD.
a) Tứ giác MNPQ là hình gì?
b) Tứ giác ABCD cần thêm điều kiện gì để MNPQ là hình vuông?
a, Xét tg ACD có :
AM=MB (gt) và DQ=OQ (gt)
=> MQ là đtb
=> MQ//AD và MQ=1/2AD
Xét tg ACD có :
AN=NC (gt) và DP=PC (gt)
=> NP là đtb
=> NP//AD và NP=1/2AD
Từ trên suy ra : MNPQ là hình thoi
b, dễ , không biết nói mình
nhớ k nha bạn
bạn ơi , nếu như bạn thì chỉ có 2 cặp cạnh đối song song và bằng nhau mà ra hình thoi thì siêu thật
1. Cho tứ giác ABCD. Gọi M,N là trung điểm của AD và BC. Biết MN=(AB+CD):2. C/M ABCD là hình thang
Cho tứ giác ABCD. Gọi M, N là trung điểm của AD và BC, biết MN =(AB + CD)/2. C/M ABCD là hình thang
gọi I là giao điểm của MN và BD
ta có
MN=(AB + DC)/2
=> MI + IN = AB/2 + DC/2
=> MI = AB/2 và IN = DC/2
=> MI và IN là đường tb của tam giác ABD và tam giác BDC
=> MI // AB và IN // DC
vì M,I,N thẳng hàng nên => AB // DC => tứ giác ABCD là hình thang
Câu 6: cho tứ giác ABCD có BC=AD. Gọi M,N,P lần lượt là trung điểm của AC,CD,DB.Chứng mình ∆MNP cân
cho hình thanh ABCD ( có AB // CD ). Gọi M , N lần lượt là trung điểm của AD , BC đường thẳng qua N // với AD cắt CD tại E. Gọi K là trung điểm MN.CMR
a) Tứ giác MNED là hình bình hành
b) Ba điểm A , K , E thẳng hàng
m.n giải giúp mik với ạ mik đag cần gấp. Cảm ơn m.n
a: Xét hình thang ABCD có
M,N lần lượt là trung điểm của AD,BC
=>MN là đường trung bình
=>MN//AB//CD
=>MN//DE
Xét tứ giác MNED có
MN//ED
NE//MD
=>MNED là hbh
b: NE=MD
MD=AM
=>NE=AM
mà NE//AM
nên ANEM là hình bình hành
=>AE cắt NM tại trung điểm của mỗi đường
=>A,K,E thẳng hàng
Cho tứ giác ABCD có AB=CD . Gọi E,F,H,Q là trung điểm của AD,AC,BC,BD . Chứng minh tứ giác EFHQ là hình thoi
Xet tam giac ABC ta co : F la trung diem AC *(gt) H la trung diem BC ( gt)===> FH la duong trung binh --> FH// AB va FH=1/2 AB
xet tam giac ABD ta co : E la trung diem AD( gt), Q la trung diem BD (gt)------> EQ la duong trung binh--> EQ//AB va EQ=1/2 AB
ta co : FH//AB (cmt) va EQ//AB (cmt)---> FH// EQ
FH=1/2 AB va EQ=1/2 AB ( cmt)--> FH=EQ
xet tu giac EFHQ ta co : FH// EQ va FH=EQ ( cmt)--> tu giac EFHQ la hbh ( tu giac co 2 cap canh doi vua // vua bang nhau)
Xet tam giac ADC ta co : E la trung diem AD ( gt) , F la trung diem AC ( gt)--> EF la duong trung binh -> EF=1/2 DC
ta co : EF=1/2DC ( cmt)
FH=1/2 AB ( cmt)
AB=DC ( gt)
==> EF = FH
xet hbh EFHQ ta co EF= FH ( cmt)--> tu giac EFHQ la hinh thoi ( tu giac co 2 canh ke bang nhau )