Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 5 2017 lúc 6:45

Kẻ BH là đường cao ứng với cạnh CD của hình bình hành ABCD

=> SABCD = BH.CD

Theo đề bài ta có chu vi hình bình hành ABCD bằng 60cm.

=> 2(AB + BC) = 60 ó 2.3BC = 60 ó BC = 10cm

Xét tứ giác KICB ta có:

IC = BC = KB = IK = 1 2 AB = 10cm

=> IKBC là hình thoi (dấu hiệu nhận biết).

Mà B ^ = 1200 =>  I C B ^  = 1800 – 1200 = 600

Xét tam giác ICB có: I C = B C I C B = 60 0

=> ICB là tam giác đều. (tam giác cân có góc ở đỉnh bằng 600).

=> BH vừa là đường cao vừa là đường trung tuyến ứng hay H là trung điểm của IC.

=> HI = HC = 1 2 BC = 5cm

Áp dụng định lý Pytago với tam giác vuông HBC ta có:

BH = B C 2 − H C 2 = 10 2 − 5 2 = 75 = 5 3 cm

=> SABCD = BH.AB = BH.2BC = 5 3 .2.10 = 100 3 cm2

Đáp án cần chọn là: A

Đỗ Hồng Phúc đz
Xem chi tiết
Trứng gà
Xem chi tiết
trường trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 20:07

a: Xét tứ giác AMCN có 

AM//CN

AN//CM

Do đó: AMCN là hình bình hành

Trần Lê Thiên Vương
Xem chi tiết
nguyễn thị kim huyền
31 tháng 10 2017 lúc 20:46

xét tứ giác AICJ ta có:

AI // CJ (  AB // CD)

AI=CJ ( I VÀ J LÀ TRUNG ĐIỂM CỦA 2 CẠNH AB VÀ CD)

=> TỨ GIÁC AICJ LÀ HÌNH BÌNH HÀNH

 mà trong hình bình hành 2 đg chéo cắt nhau tại trg điểm môic đg 

=> O là trg điểm của IJ

minh anh
Xem chi tiết
DuckAnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 2 2023 lúc 14:44

Xét ΔAID và ΔCKB có

AD=CB

góc D=góc B

DI=KB

=>ΔAID=ΔCKB

Xét ΔAIK và ΔCKI có

AI=CK

AK=CI

IK chung

=>ΔAIK=ΔCKI

hưởng vương
Xem chi tiết
Tô Mì
25 tháng 8 2021 lúc 11:30

a/ Xét △AMD vuông tại M và △CNB vuông tại N có:

\(AD=BC\) (ABCD là hình bình hành)

\(\hat{ADM}=\hat{CBN}\) (AD // BC)

⇒ △AMD = △CNB (c.h-g.n) ⇒ AM=NC (1)

\(\begin{matrix}AM\perp MN\\AN\perp NC\end{matrix}\left(gt\right)\Rightarrow AM\text{ // }NC\left(2\right)\)

Từ (1) và (2). Vậy: AMCN là hình bình hành (đpcm)

============

b/ AC và MN là hai đường chéo của hình bình hành AMNC

- Mà I là trung điểm MN

Vậy: I là trung điểm của AC (Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường) (đpcm)

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 13:39

Xét ΔADM vuông tại M và ΔCBN vuông tại N có 

AD=BC

\(\widehat{ADM}=\widehat{CBN}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra: Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MN

nên I là trung điểm của AC

Mèo Méo
Xem chi tiết
tam Nguyen
21 tháng 9 2019 lúc 18:01

a)Vì A đối xứng với F qua N =>N là trung điểm AF

Mà I là trung điểm BF(gt) => NI là đường trung bình của tam giác FAB

=>NI//AB,NI=1/2AB .Mà AB//CD(ABCD là hình chữ nhật) =>NI//CD hay NI//MC(M thuộc CD) (1)

Vì NI=1/2AB(cmt), AB=CD(ABCD là hcn) => NI=1/2CD

Lại có: M là trung điểm CD(gt) => MC=MD=1/2CD =>NI=MC (2)

Từ (1) và (2) => CINM là hình bình hành

b)Vì NI//CD (cmt), CD vuông góc với BC(ABCD là hình bình hành)

=>NI vuông góc với BC =>NI là đường cao trong tam giác NBC (3)

Vì góc BNM=90 độ(gt) =>BN vuông góc với NM

Lại có :NM//IC(CINM là hình bình hành) =>CI vuông góc với BN

=>CI là đường cao trong tam giác BNC (4)

Từ (3) và (4) =>I là trực tâm trong tam giác BNC =>BI vuông góc với AC hay BF vuông góc với AC