Mp xOy, tam giác ABC; BC=2AB. đường trùn tuyến xuất phát từ B d:x+y-2=0 Biết \(\widehat{ABC}=120\) và A(3;1). Tìm tọa độ B, C
Trong mp xOy cho tam giác ABC. bt A(3;-1) B(-1;2) I(1;-1) là trọng tâm của tam giác ABC. Trực tâm H của tam giác ABC có tọa độ (a;b). Tính a+3b
Tọa độ điểm C:
\(\left\{{}\begin{matrix}x_C=3x_I-x_A-x_B=1\\y_C=3y_I-y_A-y_B=-4\end{matrix}\right.\Rightarrow C\left(1;-4\right)\)
Ta có:
\(\overrightarrow{AH}=\left(a-3;b+1\right)\)
\(\overrightarrow{BH}=\left(a+1;b-2\right)\)
\(\overrightarrow{BC}=\left(2;-6\right)\)
\(\overrightarrow{AC}=\left(-2;-3\right)\)
Theo giả thiết
\(AH\perp BC\Rightarrow2\left(a-3\right)-6\left(b+1\right)=0\Leftrightarrow a-3b=6\left(1\right)\)
\(BH\perp AC\Rightarrow-2\left(a+1\right)-3\left(b-2\right)=0\Leftrightarrow2a+3b=4\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}a=\dfrac{10}{3}\\b=-\dfrac{8}{9}\end{matrix}\right.\Rightarrow a+3b=\dfrac{2}{3}\)
cho xOy vuông. Vẽ tam giác vuông cân ABC có góc A=90^ điểm B thuộc Õ, C thuộc Oy( A,O thuộc 2 nx mp đối nhua bờ BC)( CNROA là tia phân giác của xOy
Trong mp xOy, cho hai điểm B(-1;3) C(3;1), Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A
trong mp tọa độ xOy cho tam giác ABC với A(3;0) B(-2;4) C(-4;5) gọi G là trọng tâm tam giác ABC và phép tịnh tiến Tv biến A thành G. trong phép tịnh tiến nói trên G iến thành G' có tọa độ bằng bao nhiu? gọi H là rực tâm của tam giác ABC, tìm ảnh của H qua Tv?
Cho góc nhọn xOy. Vẽ Oz là tia phân giác của góc xOy. Trên Oz là điểm M bất kì, kẻ MN vuông góc với Ox, kẻ MP vuông góc với Oy (P thuộc Oy). CMR:
a, Tam giác OMN = tam giác OMP
b, ON =OP
c, Cho ON =10cm, MP=6cm. Tính ON
d, Đường thẳng MN cắt Oy tại A, đường thẳng MP cắt Ox tại B. Tam giác MAB là tam giác gì? C/m
XÉT\(\Delta OMN\)VÀ \(\Delta MPO\) CÓ
OM LÀ CẠNH CHUNG
GÓC N= GÓC P =90*
O1=O2 VÌ OM LÀ TIA P/G CỦA GÓC O
=>\(\Delta OMN\)=\(\Delta OPM\)(GCG)
B;VÌ TAM GIÁC OMN=TAM GIÁC OMP
=>ON=OP (cạnh tương ứng)
c;
cho góc xOy,trên tia Ox lấy M,N.Trên tia Oy lấy P,Qsao cho OM = OP, PQ = MN.chứng minh
a, tam giác OPQ=tam giác OMN
b,tam giác MPN=tam giácPMQ
c,gọi I là giao điểm của MQ và PN
1)CM tam giác IMN= tam giác IPQ
2)OI là phân giác của góc xOy
3)OI là đuờng trung trực của MP
4)MP//NQ
VẼ HÌNH VÀ LÀM HOÀN CHỈNH HỘ MK NHÉ!!!
câu a sai đề rồi bn
hok tốt
phải là tam giác OMQ = tam giác OPN chứ
Cho góc xOy = 120o.Điểm M thuộc tia phân giác của góc xOy. Kẻ MP vuông góc với Ox (P thuộc Ox), kẻ MN vuông góc với Oy (N thuộc Oy). Chứng minh rằng:
a) tam giác ΔPOM = ΔNOM
b) Tam giác PMN là tam giác đều
c) OM cắt PN tại Q. Chứng minh OM vuông góc với PN tại Q
giúp mình câu c với
a: Xét ΔOPM vuông tại P và ΔONM vuông tại N có
OM chung
\(\widehat{POM}=\widehat{NOM}\)
Do đó; ΔOPM=ΔONM
b: Ta có: ΔOPM=ΔONM
nên MN=MP
hay ΔMNP cân tại M
mà \(\widehat{NMP}=60^0\)
nên ΔMNP đều
c: Ta có: ON=OP
MN=MP
Do đó: OM là đường trung trực của NP
hay OM vuông góc tới NP tại Q
Cho hình chóp S.ABC có mp(SAB) ⊥ mp(ABC), tam giác ABC đều cạnh 2a, tam giác SAB vuông cân tại S. Tính thể tích hình chóp SABC
A. a 3 3 3
B. a 3 3 6
C. 2 a 3 3 3
D. a 3 3 12
Đáp án là A
Ta có :
( Do SAB là tam giác vuông cân tại S cạnh huyền AB=2a)
Diện tích tam giác ABC là
Vậy thể tích khối chóp SABC là:
Trong mp xoy a(-1,2) b(1,3) c(2,1) Tìm tọa độ cua vecto ca bc Tim toa đo trong tam g của abc Tinh chu vi dien tich tam giac abc
a: A(-1;2); B(1;3); C(2;1)
Tọa độ của vecto CA là:
\(\left\{{}\begin{matrix}x=-1-2=-3\\y=2-1=1\end{matrix}\right.\)
Vậy: \(\overrightarrow{CA}=\left(-3;1\right)\)
Tọa độ vecto BC là:
\(\left\{{}\begin{matrix}x=2-1=1\\y=1-3=-2\end{matrix}\right.\)
Vậy: \(\overrightarrow{BC}=\left(1;-2\right)\)
b: tọa độ trọng tâm G của ΔABC là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+1+2}{3}=\dfrac{2}{3}\\y=\dfrac{2+3+1}{3}=2\end{matrix}\right.\)
c: \(A\left(-1;2\right);B\left(1;3\right);C\left(2;1\right)\)
\(AB=\sqrt{\left(1+1\right)^2+\left(3-2\right)^2}=\sqrt{1^2+2^2}=\sqrt{5}\)
\(AC=\sqrt{\left(2+1\right)^2+\left(1-2\right)^2}=\sqrt{3^2+1^2}=\sqrt{10}\)
\(BC=\sqrt{\left(2-1\right)^2+\left(1-3\right)^2}=\sqrt{2^2+1^2}=\sqrt{5}\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+BC+AC=\sqrt{5}+\sqrt{5}+\sqrt{10}=2\sqrt{5}+\sqrt{10}\)
Vì \(AB^2+BC^2=AC^2\)
nên ΔABC vuông tại B
=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot BC=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{5}=\dfrac{5}{2}\)