A=a-b+c; B=a+b-c
Phân tích đa thức thành nhân tử:
A)(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)
B)(b+c)(c+a)(b-a)+(b+c)(a+b)(a-c)+(a-b)(b-c)(a-c)
C)(a-b)(b-c)(a-c)+(a+b)(c+a)(c-b)+(b+c)(c+a)(b-a)
D)(a-b)(b-c)(a-c)+(a+b)(b+c)(a-c)+(a+b)(a+c)(c-b)
fcregffjhhkjhgfyheruhyjkhgjdtjhygf
A=(a+b)(b+c)(c+a)+abcA=(a+b)(b+c)(c+a)+abc
=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc
=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)
=(a+b+c)(ab+bc+ca)=(a+b+c)(ab+bc+ca)
Vậy....
\((a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)\)
\(=(b+c)(ac-a^2+bc-ab)+(b+c)(ac-bc+a^2-ab)+(c+a)(a+b)(b-c)\)
\(=(b+c)(ac-a^2+bc-ab+ac-bc+a^2-ab)+(c+a)(a+b)(b-c)\)
\(=(b+c)(2ac-2ab)+(c+a)(a+b)(b-c)\)
\(=(2ab+2ac)(c-b)-(c+a)(a+b)(c-b)\)
\(=(c-b)(2ab+2ac-a^2-ab-ac-bc)\)
\(=(c-b)(b-a)(a-c)\)
a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)
giúp mình làm bài này đi rrooiif mình giúp cho
cho tam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
rút gọn:
a) -a-(b-a-c)=
d)-(a-b+c)-(a+b+c)=
e) (a+b)-(a-b)+(a-c)-(a+c)=
b) -(a-c)-(a-b+c)=
c)b-(b+a-c)=
f) (a+b-c)+(a-b+c)-(b+c-a)-(a-b-c)=
a)-b+c
d)-2a-2c
e)2b-2c
b)-2a+b
c)-a+c
f)a
-a-b+a+c=-b+c
-a+b-c-a-b-c=-2a-2c
a+b-a-b+a-c-a-c=-2c
-a-c+a-b-c=-2c+b
b-b-a+c=-a+c
a+b-c+a-b+c-b+c-a-a+b+c=2c
Biến đổi vế trái thành phải
a) a (b-c) + c (a-b) = b (a-c)
b) a(b-c) -b (a+c) = (a+b) -(-c)
c) a (b+c) - b (a-c) = (a+b) c
d) a (b-c) - a(b+d) = a (c+d)
e) (a-b) (c+d) - (a+d) (b+c)= (a-c) (d-b)
a) a(b-c)+c(a-b)=ab-ac+ca-cb=ab-cb=b(a-c)
b) a(b-c)-b(a+c)=ab-ac-ab-bc=-ac-bc=-c(a+b)
c) a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)
d) a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(a+d)
a) a(b - c) + c(a - b) = ab - ac + ac - bc = ab - bc = b(a - c)
b) a(b - c) - b(a + c) = ab - ac - ab - bc = -ac - bc = (a + b). (-c)
c) a(b + c) - b(a - c) = ab + ac - ab + bc = ac + bc = (a + b)c
d) a(b - c) - a(b + d) = ab - ac - ab - ad = -ac - ad = -a(c + d)
a) a(b-c)+c (a-b)=ab-ac+ca-cb=cb=b(a-c)
b) a(b-c)-b(a+c)=ab-ac-ab-bc=ac-bc=-c(a+b)
c) a(b+c)-a(b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)
d) a(b-c)-a(b+d)=ab-ac-ab-ad=ac-ab-ad=ac-ad=a(a+d)
Cho các tập hợp A = {a; b; c; d}; B = {b; d; e}; C = {a; b; e}. Trong các đẳng thức sau
a. A ∩ (B \ C) = (A ∩ B) \ (A ∩ C).
b. A \ (B ∩ C) = (A \ B) ∩ (A \ C).
c. A ∩ (B \ C) = (A \ B) ∩ (A \ C).
d. A \ (B ∩ C) = (A \ B) ∪ (A \ C).
Số đẳng thức sai là
A. 1
B. 3
C. 2
D. 4
Đáp án: C
A ∩ B = {b; d}; A ∩ C = {a; b}; B ∩ C = {b; e}
A \ B = {a; c}; A \ C = {c; d}; B \ C = {d}
A ∪ B = {a; b; c; d; e}; A ∪ C = {a; b; c; d; e}
A ∩ (B \ C) = {d}. (A ∩ B) \ (A ∩ C) = {d}.
A \ (B ∩ C) = {a; c; d}. (A \ B) ∪ (A \ C) = {a; c; d}.
(A \ B) ∩ (A \ C) = {c}.
a. A ∩ (B \ C) = (A ∩ B) \ (A ∩ C) ={d} ⇒ a đúng.
b. A \ (B ∩ C)= {a; c; d} (A \ B) ∩ (A \ C)={c} ⇒ b sai.
c. A ∩ (B \ C) ={d} (A \ B) ∩ (A \ C)={c} ⇒ c sai
d. A \ (B ∩C) = (A \ B) ∪ (A \ C)= {a; c; d} ⇒ d đúng.
Hiệu đối xứng của hai tập A và B, ký hiệu A∆B, xác định bởi:
A∆B = (A\B) ∪ (B\A).
Chứng minh rằng:
a) A∆B = (A ∪ B) \ (A ∩ B).
b) (A∆B) ∆C = A∆ (B∆C).
c) A ∩ (B∆C) = (A ∩ B) ∆ (A ∩ C).
d) A∆ (B ∩ C) = (A∆B) ∩ (A∆C) ⇔ A ∩ B = A ∩ C.
e) (A∆B) \C = (A\C) ∆ (B\C).
rút gọn:
a) -a-(b-a-c)=
d)-(a-b+c)-(a+b+c)=
e) (a+b)-(a-b)+(a-c)-(a+c)=
b) -(a-c)-(a-b+c)=
c)b-(b+a-c)=
f) (a+b-c)+(a-b+c)-(b+c-a)-(a-b-c)=
a. \(-a-\left(b-a-c\right)=-a-b+a+c=c-b\)
b. \(-\left(a-c\right)-\left(a-b+c\right)=-a-c-a+b-c=b-2a-2c\)
c. \(b-\left(b+a-c\right)=b-b-a+c=c-a\)
d.\(-\left(a-b+c\right)-\left(a+b+c\right)=-a+b-c-a-b-c=-2a-2c=-2\left(a+c\right)\)e. \(\left(a+b\right)-\left(a-b\right)+\left(a-c\right)-\left(a+c\right)=a+b-a+b+a-c-a-c=2b-2c=2\left(b-c\right)\)
f. \(\left(a+b-c\right)+\left(a-b+c\right)-\left(b+c-a\right)-\left(a-b-c\right)=a+b-c+a-b+c-b-c+a-a+b+c=2a\)
a) -a - (b - a - c)
= -a - b + a + c
=[ -a + a] - (b + c)
= 0 - (b + c)
= -(b + c)
d) -(a - b + c) - (a + b + c)
= -a + b - c - a - b - c
= (-a - a) + (b - b) + (c - c)
= (-a - a) + 0 + 0
= -a - a
e) (a + b) - (a - b) + (a - c) - (a + c)
= a + b - a + b + a - c - a - c
= (a - a) - (a + a) + (b + b) - (c - c)
= 0 + 2a + 2b - 0
= 2a + 2b
b) -(a - c) - (a - b + c)
= -a + c - a + b - c
= (-a - a) + (c - c) + b
= [(-a) + (-a)] + 0 + b
= 2(-a) + b
c) b - (b + a - c)
= b - b - a + c
= 0 - a - c
= -a - c
f) (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)
= 0 - (b + c - a) - (a - b - c)
= 0 - b - c + a - a + b - c
= -b - c + a - a + b - c
= (-b + b) - (c - c) + (a - a)
= 0 - 0 + 0
= 0
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
Tính một cách hợp lí:
a/a+b+c=a+b+c/a+b/a+b+c+a+b+c/b+c/a+b+c+a+b+c/a-a/b-a/c-b/c-c/a-c/b
rút gọn các biểu thức sau
a,A=(a-b)+(a+b-c)-(a-b-c)
b,B=(a-b)-(b-c)+(c-a)-(a-b-c)
c,C=(-a+b+c)-(a-b+c)-(a-b+c)-(-a+b-c)