Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Bài 1: CMR
a) (a2 + b2 ) (x2 + y2) = (ax - by)2 + (bx + ay)2
b) Nếu (a + b + c + d ) (a - b - c + d) = (a - b + c - d) ( a + b - c - d) thì \(\dfrac{a}{c}=\dfrac{b}{d}\) ( với a,b,c,d \(\ne\) 0 )
c) Nếu a + b + c = 4m thì 2ab + b2 + a2 - c2 = 16m2 - 8mc
d) Nếu (a - b)2 + (b - c)2 + (c - a)2 = 6abc thì a3 + b3 + c3 = 3abc (a + b + c +1)
Bài 2: Chứng minh
a, (a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)= a\(^3\)+b\(^{^{ }3}\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
vì a+b+c=0 nên a=-(b+c)\Rightarrow $a^2$=$(b+c)^2$
tương tự ta có : $b^2$=$(a+c)^2$
$c^2$=$(a+b)^2$
\Rightarrow $\frac{a^2}{a^2-b^2-c^2}$+$\frac{b^2}{b^2-c^2-a^2}$+$\frac{c^2}{c^2-b^2-a^2}$
=$\frac{a^2}{(b+c)^2-b^2-c^2}$+$\frac{b^2}{(a+c)^2-a^2-c^2}$
+$\frac{c^2}{(a+b)^2-a^2-b^2}$
=$\frac{a^2}{2bc}$+$\frac{b^2}{2ac}$+$\frac{c^2}{2ab}$
=$\frac{a^3+b^3+c^3}{2abc}$
vì a+b+c=0 nên a^3+b^3+c^3=3abc(hằng đẳng thức nâng cao)
\Rightarrow $\frac{a^3+b^3+c^3}{2abc}$=$\frac{3}{2}$
a^2(b-c)+b^2(c-a)+c^2(a-b)
a^3(b-c)+b^3(c-a)+c^3(a-b)
a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc
Phân tích đa thức thành nhân tử
1/ a^3(b^2-c^2)+b^3(c^2-a^2)+c^3(a^2-b^2)
2/ a(b-c)^2+b(c-a)^2+c(a-b)^2+a^3-b^3-c^3+4abc
1. cho a,b,c >0. c/m a^2(b+c-a) +b^2(c+a-b) +c^2(a+b-c) <= 3abc
2. c/m 1/a +2b +3c + 1/ b +2c +3a +1/ c+2a+3b <= 3/16
3. cho a,b,c là 3 cạnh của tam giác. cm a^3+b^3+c^3 +2abc < a^2(b+c) + b^2(a+c ) c^2(a+b)
Làm nhanh cho mình với nhé
mình sẽ tick cho các bạn trả lời =))
bài 3
Chứng minh các đẳng thức sau:
a) (a^2 + b^2)^2 – 4a^2b^2 = (a + b)^2(a – b)^2
b) (a^2 + b^2)(x^2 + y^2) = (ax – by)^2 + (bx + ay)^2
c) a^3 – b^3 + ab(a – b) = (a – b)(a + b)^2
d)(a – b)^3 + (b – c)^3 + (c – a)^3 = 3(a – b)(b – c)(c – a)
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs