Cho \(\Delta\)ABC nhọn, đường cao AH. Gọi M,N là hình chiếu của H trên AB; AC. Chứng minh:
a, \(\Delta\)MHA\(\varsigma\) \(\Delta\)HBA
b, AM.AB=AN.AC
c, Gọi I là trung điểm của AH. Tìm điều kiện của ABC để M, I, N thẳng hàng
cho tam giác ABC nhọn, đường cao AH, gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh MN= AH.sinA
Cho ∆ABC nhọn (AB < AC ) có AH là đường cao. Gọi E, F lần lượt là hình chiếu của điểm H lên cạnh AB, AC
a/ Chứng minh: AE.AB = AF.AC
b/. Chứng minh: \(\Delta AEF~\Delta ACB\)
a, Xét tg ABH vuông tại H có đg cao HE
\(AE\cdot AB=AH^2\left(1\right)\)
Xét tg ACH vuông tại H có đg cao HF
\(AF\cdot AC=AH^2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AE\cdot AB=AF\cdot AC\)
b, Xét tg AEF và tg ACB có
\(AE\cdot AB=AF\cdot AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\\ \widehat{A}.chung\)
Do đó \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)
cho tam giác ABC nhọn, đường cao AH. Lấy D, E lần lượt là hình chiếu của H trên AB, AC. Gọi F là hình chiếu của A trên DE, K là hình chiếu của H trên DE. Chứng minh DE=EF
Cho ∆ABC nhọn có đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên cạnh AB, AC. Chứng minh: MN = AH.sin BAC
cho △ nhọn ABC, kẻ đường cao AH, gọi M và N lần lượt là hình chiếu của điểm H lên cạch AB, AC. Chứng minh
a)AM.AB=AN.AC
b)Gọi I là trung điểm của AH. Tìm điều kiện của △ABC để M,I,N thẳng hàng
a: ΔAHB vuông tại H
mà HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H
mà HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
b: Vì góc AMH=góc ANH=90 độ
nên A,M,H,N cùng thuộc đường tròn đường kính AH
=>I là tâm đường tròn ngoại tiếp tứ giác AMHN
Để M,I,N thẳng hàng thì MN là đường kính của (O)
=>ΔABC vuông tại A
Tam giác ABC nhọn (AB<AC), nội tiếp đường tròn (O). Kẻ AH là đường cao của tam giác . Gọi M, N lấn lượt là hình chiếu của H trên AB, AC.
Vẽ giúp cái hình với!!!!!!!!!!!!!!!!!!!!!!!!!!!
làm sao vẽ được , nói dễ hơn làm
Cho ∆ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H đến AB, AC. C/m: hai tam giác AMN và ACB đồng dạng
Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN\(\sim\)ΔACB
4) cho △ABC nhọn, đường cao AH. gọi D, E là hình chiếu của H trên AB, AC.
a) c/m: \(AE.AC=AD.AB\)
b) c/m: △ADE ∼△ACB
c) cho AB= 3cm, AC= 6cm, \(\widehat{A}\)= \(60^0\).tính \(S_{ABC}\)
Hình tự vẽ
a) ΔΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
b) ΔΔAHB vuông tại H có đường cao HD
=> 1HE2=1AH2+1HC21HE2=1AH2+1HC2 (Hệ thức lượng trong tam giác vuông) (4)
Từ (3) và (4) => AHAD=BCCMAHAD=BCCM
=> AH.CM = BC.AD (*)
Vì AD.AB = AE.AC (cmt)
=> ADAC=AEABADAC=AEAB
Chung ˆBACBAC^
=> ΔΔADE ~ ΔΔACB (c.g.c)
=> DE=AH.CMACDE=AH.CMAC(I)
ΔΔACM vuông tại M =>
Cho tam giác ABC nhọn có đường cao AH. Gọi M và N là hình chiếu của H lên AB và AC. CMR: AB.AM=AC.AN
Xét tứ giác AMHN có góc ANM = góc AHM (1) (2 góc trong tứ giác nội tiếp cùng nhìn xuống cạnh AM)
Mà góc AHM = góc B = 90o – BHM (2)
(1)(2) => góc ANM = góc B
Xét tam giác ANM và tam giác ABC có:
Góc A chung
Góc ANM = góc B
ð tam giác ANM đồng dạng tam giác ABC (g – g)
ð AN/AB = AM/AC
ð AN.AC = AB.AM