Cho hthang ABCD( AB//CD); AC cắt BD tại O, AD cắt BC tại K, KO cắt AB, CD tại M, N a) cm MA/ND= MB/NC b)MA/NC=MB/ND
cho Hthang ABCD (AB//CD) có AB+CD=15 , BD=9, AC=12 tính diện tích của Hthang
Lời giải:
Kẻ đường cao $AE$ và $BF$ của hình thang. Ký hiệu \(DE=a, EF=b, FC=c\)
Có \(\widehat{EAB}=180^0-\widehat{AEF}=180^0-90^0=90^0\). Như vậy tứ giác $ABFE$ có ba góc vuông nên là hình chữ nhật
\(\Rightarrow AB=EF=b\)
\(\Rightarrow AB+CD=2b+a+c=15\)
Áp dụng định lý Pitago cho các tam giác vuông:
\(AE^2+EC^2=AC^2\Leftrightarrow AE^2+(b+c)^2=144(1)\)
\(BF^2+DF^2=BD^2\Leftrightarrow BF^2+(a+b)^2=81(2)\)
Lấy \((1)-(2)\Rightarrow (b+c-a-b)(a+2b+c)=63\) (do \(AE=BF\) )
\(\Leftrightarrow (c-a).15=63\Rightarrow c-a=4,2\)
\(\Rightarrow 15=a+2b+c=a+2b+a+4,2\)
\(\Rightarrow b+a=5,4\)
Thay vào (2) suy ra: \(BF^2=\frac{1296}{25}\Rightarrow BF=7,2\)
\(S_{ABCD}=\frac{(AB+CD).BF}{2}=\frac{15.7,2}{2}=54\)
1. Hình thang ABCD (AB//CD) có B-C=60, D=4/5A. Tính các góc hthang ABCD
2.Cho hthang ABCD (AB//CD), trong đó 2 tia phân giác của 2 góc A, B cắt nhau tại điểm K thuộc đáy CD. C/m tổng 2 cạnh bên = cạnh đáy CD của hthang
3.Cho hình thang ABCD( AD//BC) có AC là tia phân giác của góc A
a) CM: AB=BC.b)chứng minh tứ giác abcd cs ab =bc và ac là tia phân giác góc a .ch/m rằng abcd là hình thang
cho hình thang ABCD ( AB//CD),có AC = BD.C/m ABCD là hthang cân
Kẻ BE//AC, E thuộc CD
Xét tứ giác ABEC có
AB//EC
AC//BE
=>ABEC là hình bình hành
=>AC=BE
=>BE=BD
=>ΔBED cân tại B
=>góc BDE=góc BED
=>góc BDE=góc BAC
Xét tứ giác ABCD có góc BDC=góc BAC
nên ABCD là tứ giác nội tiếp
=>góc BAD+góc BCD=180 độ
mà góc ADC+góc BAD=180 độ
nên góc ADC=góc BCD
=>ABCD là hình thang cân
1. Hình thang ABCD (AB//CD) có B-C=60, D=4/5A. Tính các góc hthang ABCD
2.Cho hthang ABCD (AB//CD), trong đó 2 tia phân giác của 2 góc A, B cắt nhau tại điểm K thuộc đáy CD. C/m tổng 2 cạnh bên = cạnh đáy CD của hthang
Cho hthang cân ABCD (AB// CD). CD= a, mà góc A + góc B= ½ góc C+ góc D. Đườg chéo AC vuông góc BC
a) Tính các góc của hthang
b) C/m: Ac là p/giác góc DAB
c) Tính diện tích hthang ABCD
Hthang cân ABCD(AB//CD) có AB=11cm, BC=CD=25cm. Tính BD
cho Hthang ABCD (AB//CD) có AB+CD=15,BD=9 , AC=12. TÍNH diện tích của thang
Cho hthang cân ABCD có AB//CD . Lấy M và N lần lượt là trung điểm của CD và AB. Cmr:
a) AM=BM
b)MN=DC
Hthang cân ABCD(AB//CD) có AB=11cm, BC=CD=25cm. Tính BD
(toán 9) cho thang abcd co ab song song voi cd và ac vuong goc voi bd. biet bd=29, chieu cao cua hthang =21. tinh duong trung binh cua hthang