Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phương anh
Xem chi tiết
Trần gia linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 9:57

Xét ΔCHA vuông tại H và ΔCHD vuông tại H có

CH chung

HA=HD(gt)

Do đó: ΔCHA=ΔCHD(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

HA=HD(gt)

Do đó: ΔBHA=ΔBHD(Hai cạnh góc vuông)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔCAB và ΔCDB có 

CA=CD(cmt)

CB chung

BA=BD(cmt)

Do đó: ΔCAB=ΔCDB(c-c-c)

Suy ra: \(\widehat{CAB}=\widehat{CDB}\)(hai góc tương ứng)

hay \(\widehat{CDB}=90^0\)(đpcm)

Nguyễn Thanh Bình
11 tháng 7 2021 lúc 10:08

Xét tam giác ACH và tam giác DCH có:

H=90o(gt)

CH chung(gt)

AH=HD(gt)

=> 2 tam giác = nhau(2 cạnh gv)

=> C1=C2 (2 góc tương ứng)

=> CA=CD( 2 cạnh tương ứng)

Xét tam giác ACB và tam giác CDB có:

C1=C2(cmt)

CA=CD (cmt)

CB chung(gt)

=> 2 tam giác= nhau( cgc)

=> A=D=90o(2 cạnh tương ứng)

tick mk nhé

Quân Nguyễn
Xem chi tiết
Nguyễn Văn Tiến
23 tháng 1 2016 lúc 18:56

Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của các góc BAH và CAH cắt BC lần lượt tại D và E. Gọi O là giao điểm các...- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

nguyễn ngọc minh ánh
Xem chi tiết
ĐỖ THỊ HÀ LINH
Xem chi tiết
Nguyễn Ngọc Quỳnh Như
Xem chi tiết
Ben 10
30 tháng 7 2017 lúc 21:07

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

Hatake Kakashi
Xem chi tiết
Uyên Đặng
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết