Cho tam giác ABC cân tại A . Cạnh BC : 10cm ; AB = 12cm kẻ đường cao AH . Tính AH
Cho tam giác ABC có AB=10cm,BC=12cm.D là trung điểm của cạnh AB. Vẽ DH _l_ với BC (H thuộc BC) và DH=4cm. C/m tam giác ABC cân tại A
Bạn xem lời giải ở đây:
Câu hỏi của cao ngoc khanh linh - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC cân tại A, đường cao AH bằng 10cm, đường cao BK bằng 12cm. Độ dài cạnh đáy BC là cm.
Cho tam giác ABC cân tại A có BC = 24cm , AC = 20cm.
Độ dài bán kính đuờng tròn tâm O nội tiếp tam giác ABC là cm.
BC và AK cắt BC tại H.Ta có HB=HC (AK là trung trực của BC)
=>HC=BC/2.
AH=√(AC²-CH²);
∆ACH~∆COH (tam giác vuông chung góc nhọn tại O)
=>AH/AC=HC/CO=>CO=AC.HC/AH.
=20.12/√(20²-12²)=20.12/16=15.
Gọi AH, BK là hai đường cao, có AH = 10; BK = 12
thấy hai tgiác CAH và CBK đồng dạng => CA/AH = CB/BK
=> CA/10= 2CH/12 => CA = 2,6.CH (1)
mặt khác áp dụng pitago cho tgiac vuông HAC:
CA² = CH² + AH² (2)
thay (1) vào (2): 2,6².CH² = CH² + 102
=> (2,6² - 1)CH² = 102=> CH = 10 /2,4 = 6,5
=> BC = 2CH = 13 cm
Cho tam giác ABC vuông cân tại A coa AB = AC = 10cm. Tam giác
vuông cân DEF nội tiếp tam giác ABC sao cho D,E,F lân lượt thuộc các cạnh
AB, BC, CA. Hãy xác định vị trí điểm D trên cạnh AB sao cho diện tích tam
giác DEF nhỏ nhất.
cho tam giác ABC cân tại A, M là trung điểm của BC. CMR: a, tam giác AMB= tam giác AMC. b, tính độ dài AM biết AB=10cm; BC=12cm c, kẻ đường trung tuyến CE cắt AM tại D. gọi I là điểm cách đều 3 cạnh của tam giác ABC. CMR: I;D;M thẳng hàng.
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
cho tam giác abc cân tại a vẽ ah vuông bc tại h (h thuộc bc) trên tia đối của tia ha lấy điểm d sao cho ah=hd
a) biết ah=8cm ab=ac=10cm. tính độ dài các cạnh hb hc bc
b) chứng minh rằng tam giác abd cân
Cho tam giác ABC cân tại A, có AB=6cm, BC=10cm .Vẽ đường phân giác BD (D thuộc cạnh AC).Tính độ dài các đoạn AD và DC
\(AC=AB=6\)
Áp dụng định lý phân giác:
\(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{AD}{6}=\dfrac{6-AD}{10}\)
\(\Leftrightarrow10AD=36-6AD\Rightarrow AD=\dfrac{9}{4}\) (cm)
\(\Rightarrow DC=AC-AD=\dfrac{15}{4}\) (cm)
Cho tam giác ABC cân tại A nội tiếp đường tròn (O; 10cm), biết độ dài đường cao AH bằng độ dài cạnh BC. Diện tích của tam giác ABC là ..........cm2.
ta tính được AH=16(cm)
Suy ra Sabc=162/2=128(cm2)
Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Kẻ AH vuông góc với BC, H ∈ BC
a. Chứng minh tam giác ABH = tam giác ACH
b. Chứng minh BN=CM
c. Nếu cho cạnh AH=8cm, AB= 10cm. Tính cạnh BC
a. xét tam giác ABH và tam giác ACH
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )
Vậy tam giác ABH = tam giác ACH ( c.g.c )
b. xét tam giác vuông BNH và tam giác vuông CNH
BN = CM ( AB = AC ; AM = AN )
BH = CH
Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )
c. áp dụng định lý pitao vào tam giác vuông AHB:
\(AB^2=AH^2+BH^2\)
\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)
=> BC = BH. 2 = 8.2 =16 cm
Chúc bạn học tốt!!!
a, Xét tam giác ABH và tam giác ACH
^AHB = ^AHC = 900
AB = AC (gt)
AH _ chung
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam ANB và tam giác AMC có :
^A _ chung
AM = AN(gt)
AB = AC (gt)
Vậy tam giác ANB = tam giác AMC ( c.g.c )
=> BN = CM ( 2 cạnh tương ứng )
c, Xét tam giác ABH vuông tại H, theo định lí Pytago
\(BH=\sqrt{AB^2-AH^2}=6cm\)
Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến
=> BC = 2BH = 12 cm
a, ΔABC cân tại A =>AB=AC và ACH=ABH
Xét ΔABH và ΔACH có:
ACH=ABH
AB=AC
AHC=AHB=900
=>ΔABH=ΔACH(cạnh huyền-góc nhọn) (đpcm)
b, Ta có AM+MB=AN+NC và AM=AN
=>MB=NC
Xét ΔBMC và ΔCNB có:
BM=NC
MBC=NCB
BC chung
=>ΔBMC=ΔCNB(c.g.c)
=>BN=CM (đpcm)
c, Xét ΔABH có: AB2=BH2+AH2 (pi-ta-go)
=>BH2=36
=>BH=6(cm)
ΔABC cân tại A có AH là đường cao
=> AH cũng là trung tuyến
=>HB=HC=BC/2
=>BC=2HB=12 (cm)
Cho tam giác ABC cân tại A, đường cao AH bằng 10cm, đường cao BK bằng 12cm. Độ dài cạnh đáy BC là cm.
ta có:
AH.BC = BK.AC
10.BC = 12.AC
=>BC= 6.AC/5 => BC^2=36.AC^2/25
mặt khác:
AC^2 = AH^2 + BC^2/4 = AH^2 + 36.AC^2/100
=>(1-36/100). AC^2= AH^2 = 100
=> AC^2 = 100^2/8^2
=> AC = 100/8 = 25/2
=> BC = 6.25/2.5=15
tam giac ACH đồng dạng tam giác BKC nên CA/AH = CB/BK
Ai có thể giúp mình với!!!!!!!!!!!!!!!? | Yahoo Hỏi & Đáp
tự thế số vô