Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2019 lúc 18:28

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có:

Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 1:24

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

Phạm Đức Huy
Xem chi tiết
Hoàng Tử Hà
18 tháng 4 2021 lúc 18:44

Đáy là hình vuông hay chữ nhật bạn? Hình chữ nhật sao có các cạnh bằng nhau và bằng a được? 

Hải Nguyễn Thanh
Xem chi tiết
Hải Nguyễn Thanh
1 tháng 5 2023 lúc 15:45

Cần gấp ạaaaa

Đào Đức Dương
1 tháng 5 2023 lúc 21:46

loading...

Của cậu nek!!!

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 8 2019 lúc 10:04

Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 1:27

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 5 2019 lúc 17:51

Chọn C

Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp hình chóp S. BHD và tam giác BHD.

Ta có HB= a 2 2 , H D = H C 2 + D C 2 = a 2 2 2 + a 2 = a 6 2 , B D = a 2 + 2 a 2 = a 3

Áp dụng định lí Cô sin, ta có 

cos B H D ^ = a 2 2 + 3 a 2 2 - 3 a 2 2 . a 2 2 a 6 2 = - 1 3 ⇒ sin B H D ^ = 2 3

Diện tích tam giác BHD là

Gọi O là tâm đường tròn ngoại tiếp tam giác BHD và M là trung điểm SH. Mặt phẳng trung trực của SH cắt trục đường tròn ngoại tiếp tam giác BHD tại E. Khi đó E là tâm mặt cầu cần tìm.

Ta có

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2019 lúc 6:35

Đáp án B

Mặt phẳng cách đều 5 điểm là mặt phẳng mà khoảng cách từ 5 điểm đó đến mặt phẳng là bằng nhau.

Có 5 mặt phẳng thỏa mãn là:

+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SBC .

+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SAD .

+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SAB .

+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SCD .

+ Mặt phẳng đi qua trung điểm của SA,SB,SC,SD.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 4 2017 lúc 2:54

Cr746
Xem chi tiết