Bài 1. Cho x,y là số tự nhiên . Chứng minh rằng : ƯCLN ( 3x + 11y ; 5x + 18y ) = ƯCLN ( x , y ).
Cho hai đa thức A = 5x + y + 1 và B = 3x - y + 4 . Chứng minh rằng nếu x = m và y = n với m và n là một số tự nhiên thì tích A . B là một số chẵn
2 trường hợp:
1,m;n cùng dấu.
2,m;n khác dấu.
Bài 1:
Tìm số tự nhiên b biết rằng chia 326 cho b thì dư 13 còn chia 553 cho b thì dư 13
Bài 2:
Chứng minh rằng 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
bài 1: cho P và Q là 2 số tự nhiên lớn hơn 3 và P-Q = Z. CHỨNG MINH RẰNG P+Q chia hết cho 12
bài 2: tìm số nguyên tố P sao cho 8P^2 +1 cũng là số nguyên tố
nhớ có lời giải nha. THANKS BẠN NHIỀU
Bài 1: cho 12 số có 2 chữ số khác nhau. chứng minh rằng tồn tại 2 số có hiệu là số có 2 chữ số giống nhau
Bài 2: chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại 2 số có tổng hoặc hiệu chia hết cho 50.
AI LÀM CÓ CÁCH GIẢI MÌNH SẼ TICK.HỨA LUÔN
Bài 1 Tìm các số tự nhiên a và b biết :
a, a - b = c và ƯCLN(a,b) = 16
b,a - b = 90 và ƯCLN(a,b) = 15
c, ab = 294 và ƯCLN (a,b) =7
Bài 2 Tìm số tự nhiên n biết rằng trong ba số 6 , 16, n bất kì số nào cũng là ước của hai số kia
Bài 3 Tìm số tự nhiên lớn nhất có 3 chữ số biết rằng chia nó cho 10 thì dư 3 chia nó cho 12 thì dư 5 chia nó cho 15 thì dư 8 và nó chia hết cho 19
Bài 4 Tìm số tự nhiên nhỏ nhất để khi chia cho 5 ; 8 ; 12 thì số dư theo thứ tự là 2 ; 6 ; 8
Bạn nào trả lời nhanh nhất đủ cả 4 bài đầy đủ lời giải mình like
Bài 18 : Chứng minh rằng mọi số tự nhiên n , các số sau đây là hai số nguyên tố cùng nhau :
a ) n+2 va n + 3
b) 2n + 3 va 3n +5
a) gọi UCLN(n+2;n+3)=d
ta có :
n+2 chia hết cho d
n+3 chia hết cho d
=>(n+3)-(n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+2;n+3)=1
=>nguyên tố cùng nhau
b)
gọi UCLN(2n+3;3n+5)=d
ta có : 2n+3 chia hết cho d =>3(2n+3) chia hết cho d =>6n+9 chia hết cho d
3n+5 chia hết cho d => 2(3n+5) chia hết cho d =>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n+3;3n+5)=1
=>nguyên tố cùng nhau
=>ĐPCM
Cho số A=1/2+1/3+1/4+...+1/50
Chứng minh rằng A không phải là số tự nhiên
1/2 < 2(1/3 - 1/5)
1/3 < 2(1/5 - 1/7)
Mà a cũng không thể nhỏ hơn 1 được !
=======================
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên.
Anh bạn trên nhầm rồi ! Sao lại viết :
1/2 < 2(1/3 - 1/5)
1/3 < 2(1/5 - 1/7)
Mà a cũng không thể nhỏ hơn 1 được !
=======================
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
bài 1: tìm số tự nhiên n biết rằng:
a.1+2+3+...+n=378
b. chứng minh:A=4+2^2+2^3+...+2^2015 là 1 số chính phương
c. tìm A thuộc N biết ƯCLN (a,b)=10 ; BCNN (a,b)=120
d. Tìm n thuộc Z sao cho n-7 chia hết cho 2n+3
Bạn ơi, cái câu b đấy
Minh tính đc A=22016-1.
22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha