Viết phương trình của mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(4; – 2; 1) và bán kính R = 9;
b) (S) có tâm I(3; 2; 0) và đi qua điểm M(2; 4; – 1);
c) (S) có đường kính là đoạn thẳng AB với A(1; 2; 0) và B(– 1; 0; 4).
Bài tập 2 : Viết phương trình mặt cầu (S) , trong các trường hợp sau(có hình vẽ) a) (S) qua A(3;1;0) và tâm I (5;5;0) thuộc trục . b) (S) có tâm Onvà tiếp xúc mặt phẳng(a): 16x-15y-12z+75=0 . c) (S) có tâm I(-1;2;0) và có một tiếp tuyến là đường thẳng denta: x+1/-1=y-1/1=z/-3
a.
\(\overrightarrow{AI}=\left(2;4;0\right)\Rightarrow R^2=AI^2=20\)
Phương trình (S):
\(\left(x-5\right)^2+\left(y-5\right)^2+z^2=20\)
b.
\(R=d\left(O;\left(\alpha\right)\right)=\dfrac{\left|16.0-15.0-12.0+75\right|}{\sqrt{16^2+15^2+12^2}}=3\)
Phương trình (S): \(x^2+y^2+z^2=9\)
c.
Đường thẳng \(\Delta\) qua \(A\left(-1;1;0\right)\) và nhận \(\overrightarrow{u}=\left(-1;1;-3\right)\) là 1 vtcp
\(\overrightarrow{AI}=\left(0;1;0\right)\)
\(R=d\left(I;\Delta\right)=\dfrac{\left|\left[\overrightarrow{AI};\overrightarrow{u}\right]\right|}{\left|\overrightarrow{u}\right|}=\dfrac{\sqrt{10}}{\sqrt{11}}\)
Phương trình (S): \(\left(x+1\right)^2+\left(y-2\right)^2+z^2=\dfrac{10}{11}\)
Trong không gian tọa độ Oxyz cho mặt cầu (S) có tâm I(1;-2;3) và đường thẳng d có phương trình x = 1 + 2 t y = - 1 - t z = 1 + 2 t . Biết rằng mặt cầu (S) tiếp xúc với đường thẳng d. Viết phương trình mặt cầu (S).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1;-1;1) và mặt phẳng (P): 2x - y + 2z + 1 = 0. Biết (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 3. Viết phương trình của mặt cầu (S).
A. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 13
B. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 169
C. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
D. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
Cho I(4;-4;1). Viết phương trình mặt cầu (S) tâm I sao cho (S) cắt mặt phẳng (Oxy) theo một đường tròn có bán kính r = 2 .
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên tia Ox bán kính bằng 3 và tiếp xúc với mặt phẳng (Oyz). Viết phương trình mặt cầu (S).
A. x 2 + y 2 + z - 3 2 = 9
B. x 2 + y 2 + z + 3 2 = 9
C. x - 3 2 + y 2 + z 2 = 3
D. x - 3 2 + y 2 + z 2 = 9
Chọn D.
Phương pháp: Tìm tâm và bán kính mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên tia Ox bán kính bằng 3 và tiếp xúc với mặt phẳng (Oyz). Viết phương trình mặt cầu (S).
Trong không gian Oxyz, cho mặt phẳng α : 4x-3y+2z+28=0 và điểm I(0;1;2). Viết phương trình của mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng α .
Viết phương trình mặt cầu (S) có tâm I nằm trên tia Oy, bán kính R = 4 và tiếp xúc với mặt phẳng (Oxz)
A. x 2 + y 2 + z − 2 2 = 16.
B. x 2 + y + 4 + z 2 = 16.
C. x 2 + y − 4 + z 2 = 16.
D. x 2 + y ± 4 + z 2 = 16.
Đáp án C.
Ta có I ∈ O y ⇒ I 0 ; i ; 0 , i > 0.
O x z : y = 0 ⇒ d I ; O x z = R = 4 ⇔ i 4 = 4 ⇒ i = 4 ⇒ I 0 ; 4 ; 0 ⇒ x 2 + y − 4 + z 2 = 16.
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;-2;-3) và đi qua điểm M(-1;0;-2). Phương trình của mặt cầu (S) là:
A. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 3
B. ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9
C. ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 3
D. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
P x - 2 y + 2 z = 0 ; Q : x - 2 y + 3 z - 5 = 0 . Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
A. S : x + 2 2 + y + 4 2 + z + 3 2 = 1
B. S : x - 2 2 + y - 4 2 + z - 3 2 = 6
C. S : x - 2 2 + y - 4 2 + z - 3 2 = 2 7
D. S : x - 2 2 + y + 4 2 + z + 4 2 = 8
Chọn C.
Phương pháp: Lần lượt tìm các yếu tố tâm và bán kính của mặt cầu.
Cách giải: Tọa độ tâm mặt cầu thỏa mãn hệ