Cho tam giác ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC
b) Chứng minh IH/IA = AD/DC
c) Chứng minh AB.BI = BD.HB và tam giác AID cân.
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
CHo tam giác ABC vuông tại A, đường caoAH. Kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Biết AB=6cm, AC=8cm. TÍnh chu vi, diện tích tam giác ADE
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm. Hãy giải tam giác vuông ABC
Xét tam giác ABC vuông tại A áp dụn Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)
\(\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=90^o-53^o\approx37^o\)
Cho tam giác ABC vuông tại A, đường cao AD.
Tìm AD ? Biết AB=6cm AC= 8cm
Xét tam giác ABC vuông có
\(AB^2+AC^2=BC^=>BC^2=100=>BC=10\) (cm)
Xét 2 tam giác ADB và ADC có
\(ADB=ADC=90\)độ
\(ABD=ACD=90:2=45\)độ
=>Đồng dạng theo trường hợp gg
=>\(BD=DC=BC/2=10/2=5\)
=>Xét tam giác ADB vuông có
\(AD^2+BD^2=AB^2=>AD^2=11=>AD=căn11\)
Chúc em học giỏi
cho tam giác ABC vuông tại a đường cao AH
a tìm AD? biết AB=6cm aC=8CM /
B CHỨNG minh tam GIÁC ABC đòng dạng với tam giác DBF
cho tam giác ABC vuông tại A biết AB=6cm AC=8cm phân giác của góc A cat cạnh BC tại D tính BD,CD ?
Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Vì AD là phân giác \(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}CD\)
Ta có: \(BD+CD=BC\Rightarrow\dfrac{3}{4}CD+CD=10\Rightarrow\dfrac{7}{4}CD=10\Rightarrow CD=\dfrac{40}{7}\)
\(\Rightarrow BD=\dfrac{3}{4}.\dfrac{40}{7}=\dfrac{30}{7}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm, AC=8cm, BC=10cm. Tính AH
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
cho tam giác abc vuông tại A biết AB=6cm, AC= 8cm, BC=10cm.Tính các tỉ số lượng giác của góc C
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\cos C=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)
\(\tan C=\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\cot C=\dfrac{AC}{AB}=\dfrac{4}{3}\)
cho tam giác vuông abc vuông tại a biết ab = 6cm ac = 8cm đường cao AH a) chứng minh tam giác ABC tương đương tam giác HBA
b) chứng minh AB bình = AH.BC
c) tính AH
d) tia phân giác A cắt BC tại M, tính BM và MC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
d: BM/CM=AB/AC=3/4
=>4BM=3CM
mà BM+CM=10
=>CM=40/7cm;BM=30/7cm