\(\frac{x}{y}\) = \(\frac{9}{7}\) ; \(\frac{y}{Z}\) = \(\frac{7}{3}\)và x-y+z = -15
\(\frac{x}{y}\) = \(\frac{7}{20}\) ; \(\frac{y}{Z}\) = \(\frac{5}{8}\)và 2x + 5y - 2z = 100
ai giúp mình với
a)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{9}{7},\frac{y}{z}=\frac{7}{3}\)và x-y+z=-15
c) \(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\)và-x+y+z=-120
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm các dãy tỉ số bằng nhau:
a) \(\frac{x}{4}=\frac{y}{3}=\frac{3}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
c) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x-y+z=(-15)
d) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=(-120)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3\cdot3+4\cdot9}=\dfrac{62}{31}=2\)
Do đó: x=8; y=6; z=18
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
DO đó: x=-27; y=-21; z=-9
Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Tìm các số x,y,z, biết:
a,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}vàx-y+z=-15\)
b,\(\frac{x}{4}=\frac{9}{3}=\frac{z}{9}vàx-3y+4z=62\)
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}và2x+5y-2z=100\)
Theo đề ta có:
\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{x}{9}=\frac{y}{7};\frac{y}{7}=\frac{z}{3}\)
Hay: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\frac{x}{9}=-3\)
\(\frac{y}{7}=-3\)
\(\frac{z}{3}=-3\)
=> x = -27
y = -21
x= -9
Bạn kiểm tra lại thử giúp mình nha! mấy bài sau bạn làm tương tự, nhớ tick đúng cho mình nha! Cảm ơn bạn!
Theo đề ra ta cs
\(+,\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\)(1)
\(+,\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-3\\\frac{y}{7}=-3\\\frac{z}{3}=-3\end{cases}\Rightarrow\hept{\begin{cases}x=-27\\y=-21\\z=-9\end{cases}}}\)
Tìm x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{7}=\frac{7}{3}\)và x-y+z=-15
c) 5x=8y=20z và x-y-z=3
d) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và x+y+z=-120
e) \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)x.y.z=20
f) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) và \(x^2+y^2-z^2=585\)
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
b) Có vẻ là sai đề bài thì phải! Xem lại giúp mình với!
c)5x=8y=20z
=> 5x/40 = 8y/40 = 20z/40
=> x/8 = y /5 = z/2
rồi áp dụng tính chất các dãy tỉ số bằng nhau, làm tương tự như câu a!
Câu e tương tự!
Câu f bạn nhân mỗi phân số lên mũ 2 nhé!
Với x, y ,z khác 0 và \(\frac{2x-7}{4x-9}=\frac{7}{9},\frac{3y-6}{4z-8}=\frac{3}{4}\Rightarrow\frac{x}{y}+\frac{y}{z}=?\)
Cho \(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\) và \(\frac{9-x}{7}+\frac{11-x}{9}=2\).Tính x+y+z?
Từ \(\frac{9-x}{7}+\frac{11-x}{9}=2\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-2=0\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-1-1=0\)
\(=>\left(\frac{9-x}{7}-1\right)+\left(\frac{11-x}{9}-1\right)=0\)
\(=>\frac{2-x}{7}+\frac{2-x}{9}=0=>\left(2-x\right).\left(\frac{1}{7}+\frac{1}{9}\right)=0\)
Vì \(\frac{1}{7}+\frac{1}{9}\) khác 0=>2-x=0=>x=2
Theo T/c dãy tỉ số=nhau:
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}\)\(=\frac{\left(x+y+z\right)+\left(16-25+9\right)}{9+16+25}=\frac{x+y+z}{50}\)
Thay x=2 vào \(\frac{x+16}{9}=>\frac{2+16}{9}=\frac{x+y+z}{50}=>\frac{x+y+z}{50}=2=>x+y+z=100\)
Vậy x+y+z=100
Cho \(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\)và \(\frac{9-x}{7}+\frac{11-x}{9}=2\),Tính x + y + z
Ta có : \(\frac{9-x}{7}=\frac{11-x}{9}=1+\frac{2-x}{7}+1+\frac{2-x}{9}=2=>\left(2-x\right)\left(\frac{1}{7}+\frac{1}{9}\right)=0=>2-x=0=>x=2\)
Thế vào tìm đc y và z rồi ra x+y+z nha bạn
\(\frac{x}{y}=\frac{7}{9};\frac{y}{z}=\frac{7}{3}\) và x-y+z=-15
Tìm x,y,z
Vì \(\frac{x}{y}=\frac{7}{9}\)\(\Rightarrow\frac{x}{7}=\frac{y}{9}\)(1)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}=\frac{x-y+z}{7-9+3}=-\frac{15}{1}=-15\)
\(\begin{cases}\frac{x}{7}=-15\\\frac{y}{9}=-15\\\frac{z}{3}=-15\end{cases}\Rightarrow\begin{cases}x=-105\\y=-135\\z=-45\end{cases}\)
Vậy x=-105
y=-135
z=-45
Ta có:\(\frac{x}{y}=\frac{7}{9};\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{9};\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x}{49}=\frac{y}{63};\frac{y}{63}=\frac{z}{27}\)
\(\Rightarrow\frac{x}{49}=\frac{y}{63}=\frac{z}{27}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{49}=\frac{y}{63}=\frac{z}{27}=\frac{x-y+z}{49-63+27}=\frac{-15}{13}\)
Suy ra: \(\frac{x}{49}=\frac{-15}{13}\Rightarrow x=-\frac{735}{13};\frac{y}{63}=\frac{-15}{13}\Rightarrow y=-\frac{945}{13};\frac{z}{27}=\frac{-15}{13}\Rightarrow z=-\frac{405}{13}\)
MK nhầm cái đề bài nha \(\frac{x}{y}=\frac{9}{7}\)
1.Tìm x,y,z, biết :\(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\) và x-y-z = 78
2.Tìm x trong các tỉ lệ thức sau:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
3. Tìm các số x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x - 3y - 4z = 62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x - y + z = -15
c) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x + 5y + 2z = 100
d) 5x = 8y = 20z và x - y - z = 3
Giúp với ạ, đang cần gấp