Cho \(b^2=ac\) và \(c^2=bd\) ( với b,c,d ≠ 0 ; b+c ≠ d ; \(b^{2017}+c^{2017}\text{ ≠}d^{2017}\) )
CMR :
\(\dfrac{a^{2017}+b^{2017}+c^{2017}}{b^{2017}+c^{2017}-d^{2017}}=\dfrac{\left(a+b+c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)và b, d khác 0. CMR \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Tham khảo:Chứng minh a/b=c/d hoặc a/b=d/c biết (a^2+b^2)/(c^2+d^2)=ab/cd - An Nhiên
\(\text{Cho }\dfrac{a}{b}=\dfrac{d}{c}\text{ và }b,d\notin0\text{.CMR:}\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(\text{Ta có:}\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\text{Lại có:}\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{\left(bd\right).k^2}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{\left(b^2+d^2\right).k^2}{b^2+d^2}=k^2\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
giúp ;-;
cho a,b,c khác 0 thỏa manxb^2=ac và c^2=bd. Cmr (a+b+c/b+c+d)=a/d
cho \(^{b^2=ac,c^2=bd}\)với b,c,d khác 0 và b+c+d=0 CMR:
\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
b2 = ac \(\Rightarrow\frac{a}{b}=\frac{b}{c}\)( 1 )
c2 = bd \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Vậy ...
minh moi dang cau moi giup minh dc khong
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3
Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
cho a/b=c/d và b,d khác 0 . Chứng minh (a^2+c^2)/(b^2+d^2)=ac/bd
dấu "/" là viết tắt của dấu":"
Cho b^2= ac, c^2= bd với b,c,d khác 0, b+c khác d, b^3+c^3 khác d^3 : a^3+b^3-c^3 / b^3+c^3-d^3= ( a+b+c/b+c-a)^3
cho a,b,c,d là 4 số khác 0 thỏa mãn b^2= ac và c^2=bd
chứng minh rằng: a^3+b^3+c^3/b^3+c^3+d^3=a/d
giúp mình với mai đi học rùi!!!
cho 4 số a,b,c,d khác 0 thỏa mãn b^2=ac và c^2=bd. Chứng minh rằng a/d=(a+b+c/b+c+d)^3
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)
Ta lại có : \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) ; (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (ĐPCM)
Cho a^2 + b^2 = 1, c^2+ d^2 = 1 và ac + bd = 0
Cm ab + cd = 0
tham khảo : Câu hỏi của mangoes - Toán lớp 8 - Học toán với OnlineMath
k mik nha!
Địa chỉ mua bimbim : Số 38 đường NGuyễn Cảnh Chân TP Vinh Nghệ AN