Trong mặt phẳng tọa độ Oxy xét ba đường thẳng có phương trình:
(d1): x-5y+k=0; (d2): (2k-3)x+k(y-1)=0; (d3): (k+1)x-y+1
Tìm các giá trị của tham số k để ba đường thẳng đó đồng quy
trong mặt phẳng tọa độ oxy cho hình bình hành ABCD, biết đường chéo AC và BD lần lượt nằm trên 2 đường thẳng d1: x - 5y + 4 = 0, d2: x + 3y -3=0. Phương trình đường thẳng AB: x-y+9=0. tìm tọa độ điểm C.
trong mặt phẳng tọa độ oxy cho các đường thẳng (d1): -2x+5y-8=0;(d2): x+2y-5=0;(d3): (m^2-1)x+3y-5-2m=0.xác định m để ba đường thẳng trên là ba đường thẳng phân biệt đồng quy
Tọa độ giao điểm của đường thẳng (d1) và (d2) là:
\(\left\{{}\begin{matrix}-2x+5y-8=0\\x+2y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Để 3 đường thẳng trên đồng qua thì:
\(\left(m^2-1\right)x+3y-5-2m=0\\ \Leftrightarrow\left(m^2-1\right).1+3.2-5-2m=0\\ \Leftrightarrow m^2-1+6-5-2m=0\\ \Leftrightarrow m^2-2m=0\\ \Leftrightarrow m\left(m-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}-2x+5y-8=x+2y-5\\x+2y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x+y=1\\x+2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Thay x=1 và y=2 vào (d3), ta được:
\(m^2-1+3\cdot2-5-2m=0\)
\(\Leftrightarrow m\left(m-2\right)=0\)
hay \(m\in\left\{0;2\right\}\)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình là 2 x + 5 y - 6 = 0 . Tìm tọa độ một vectơ chỉ phương u → của d.
A. u → = ( 2 ; 5 )
B. u → = ( 5 ; 2 )
C. u → = ( 5 ; - 2 )
D. u → = ( - 5 ; - 2 )
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình là 2x+5y-6=0. Tìm tọa độ một vectơ chỉ phương u → của d.
Trong mặt phẳng tọa độ Oxy cho điểm D(6;2) và hai đường thẳng (d1): x-2y+1=0; (d2): x+2y-3=0. Viết phương trình đường thẳng \(\left(\Delta\right)\) đi qua D và cắt hai đường thẳng (d1); (d2) tại hai điểm B; C sao cho tam giác tạo bởi ba đường thẳng (d1); (d2); \(\left(\Delta\right)\) là tam giác cân, với BC là cạnh đáy.
Trong mặt phẳng tọa độ Oxy, hai đường thẳng d 1 : 4 x + 3 y - 18 = 0 ; d 2 : 3 x + 5 y - 19 = 0 cắt nhau tại điểm có toạ độ là
trong mặt phẳng tọa độ oxy , tìm m để hai đường thẳng có phương trình d1:mx+(m-1)y+2m và d2:2x+y-1=0 song song?
Để hai đường song song thì m=2 và m-1=1 và m<>-1
=>m=2
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình 2x + y − 4 = 0.
a) Hãy viết phương trình của đường thẳng d 1 là ảnh của d qua phép vị tự tâm O tỉ số k = 3
b) Hãy viết phương trình của đường thẳng d 2 là ảnh của d qua phép vị tự tâm I(1;2) tỉ số k = -2
a) Lấy hai điểm A(0;4) và B(2;0) thuộc d. Gọi A′, B′ theo thứ tự là ảnh của A và B qua phép vị tự tâm O tỉ số k = 3. Khi đó ta có
Vì O A → = ( 0 ; 4 ) nên O A ' → = ( 0 ; 12 ) . Do đó A′ = (0;12).
Tương tự B′ = (6;0); d1 chính là đường thẳng A'B' nên nó có phương trình:
b) Có thể giải tương tự như câu a) .
Sau đây ta sẽ giải bằng cách khác.
Vì d 2 / / d nên phương trình của d 2 có dạng 2x + y + C = 0.
Gọi A′ = (x′;y′) là ảnh của A qua phép vị tự đó thì ta có:
I A ' → = − 2 I A → hay x′ + 1 = −2, y′ − 2 = −4
Suy ra x′ = −3, y′ = −2
Do A' thuộc d 2 nên 2.(−3) – 2 + C = 0.
Từ đó suy ra C = 8
Phương trình của d 2 là 2x + y + 8 = 0
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn có phương trình x 2 + y 2 – 4 x - 2 y – 8 = 0 . Đỉnh A thuộc tia Oy, đường cao kẻ từ đỉnh C thuộc đường thẳng x + 5y = 0. Tìm tọa độ đỉnh B của tam giác ABC.
A. B (-1;-1)
B. B (0;4)
C. B (5;-1)
D. B (1;9)