Tứ giác ABCD có \(\widehat{B}=\widehat{A}+10^0;\widehat{C}=\widehat{B}+10^0;\widehat{D}=\widehat{C}+10^0\). Khẳng định nào dưới đây là đúng ?
(A) \(\widehat{A}=65^0\) (B) \(\widehat{B}=85^0\) (C) \(\widehat{C}=100^0\) (D) \(\widehat{D}=90^0\)
Tứ giác ABCD có \(\widehat{C}=60^0;\widehat{D}=80^0;\widehat{A}-\widehat{B}=10^0\). Tính số đo các góc A và B ?
Tứ giác ABCD có: ( ko bik ghi góc nên ko ghi nha )
A + B + C + D = 3600 ( Tổng 4 góc của tứ giác )
A + B = 3600 - ( C + D )
A + B = 3600 - ( 600 + 800 )
A + B = 2200
A = [ ( A + B ) + ( A - B ) ] : 2 = ( 2200 + 100 ) : 2 = 1150
A - B = 100
→ B = A - 100 = 1150 -100 = 1050.
BÀI 1 : CHO TỨ GIÁC ABCD CÓ : \(\widehat{A}+\widehat{B}=200^{^0};\widehat{B}+\widehat{C}=218^0;\widehat{C}+\widehat{D}=160^0\) TÍNH \(\widehat{C}\)VÀ \(\widehat{D}\)
BÀI 2 : CHO TỨ GIÁC ABCD CÓ \(\widehat{B}=80^0;\widehat{D}=120^0\)GÓC NGOÀI ĐỈNH C BẰNG 1300 . TÍNH GÓC A CỦA TỨ GIÁC
BÀI 3 : TỨ GIÁC ABCD CÓ \(\widehat{A}=57^0;\widehat{C}=110^0;\widehat{D}=75^0\).TÍNH GÓC NGOÀI TẠI ĐỈNH B
Tứ giác ABCD có \(\widehat{C}=60^{\sigma},\widehat{D}=80^{\sigma},\widehat{A}-\widehat{B}=10^{\sigma}\).Tính số đo của\(\widehat{A}\) và \(\widehat{B}\).
Ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(\widehat{C}+\widehat{D}\right)\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(60+80\right)=220^o\)
mà \(\widehat{A}-\widehat{B}=10^o\)
\(\Rightarrow\widehat{A}=\left(220-10\right):2=105^o\)
\(\Rightarrow\widehat{B}=105-10=95^o\)
Vậy \(\left\{{}\begin{matrix}\widehat{A}=105^o\\\widehat{B}=95^o\end{matrix}\right.\)
Cho tứ giác ABCD, biết: \(\widehat{B}=\widehat{A}+20^o;\widehat{C}=3\widehat{A};\widehat{D}-\widehat{C}=20^o\).
a) Tính các góc của tứ giác ABCD
b) Tứ giác ABCD có phải hình thang không? Vì sao?
Tính các góc của tứ giác ABCD biết
\(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}=\widehat{C}-\widehat{D}=10^o\)
góc C-góc D=10
=>góc C=góc D+10
góc B-góc C=10
=>góc B=10+góc C=góc D+20
góc A-góc B=10
=>góc A=góc B+10=góc D+30
góc A+góc B+góc C+góc D=360
=>4*góc D+60=360
=>góc D=75 độ
=>góc C=85 độ; góc B=95 độ; góc A=105 độ
cho tứ giác ABCD biết:\(\widehat{B}=\widehat{A}+20;\widehat{C}=3\widehat{A};\widehat{D}-\widehat{C}=20\)
a/tính các góc của từ giác ABCD
b/tứ giác ABCD có phải hình thang k? vì sao?
Cho tứ giác ABCD. Các tia phân giác \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\)cắt nhau tạo thành một tứ giá. Chứng minh tứ giác đó có tổng hai góc đối bằng 1800.
Tứ giác ABCD có \(\widehat{A}=65^0,\widehat{B}=117^0,\widehat{C}=71^0\). Tính số đo góc ngoài tại đỉnh D ?
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{0}\)(Định lí tổng các góc trong tứ giác)
\(\Rightarrow\)\(\widehat{D}=360^{0}-(\widehat{A}+\widehat{B}+\widehat{C})\)
\(=360^{0}-(65^{0}+117^{0}+71^{0}) =107^{0}\)
Gọi \(\widehat{D_{1}}\) là góc ngoài tại đỉnh D của tứ giác ABCD. Ta có:
\(\widehat{D}+\widehat{D_{1}}=180^{0}\) (\(\widehat{D}\) và \(\widehat{D_{1}}\) là hai góc kề bù)
\(\Rightarrow\) \(\widehat{D_{1}}=180^{0}-\widehat{D}\)
\(=180^{0}-107^{0}=73^{0}\)
Vậy số đo góc ngoài tại đỉnh D của tứ giác ABCD là 730
Tứ giác ABCD có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(65^o+117^o+71^o+\widehat{D}=360^o\)
\(253^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-253^o=107^o\)
\(\Rightarrow\) Góc ngoài của \(\widehat{D}=180^o-107^o=73^o\)
Vậy số đo góc ngoài tại đỉnh D là \(73^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^O\) (định lí tứ giác)\
\(\Rightarrow\widehat{D}=360^o-65^o-117^o-71^o\)
\(\Rightarrow\widehat{D}=107^o\)
Gọi \(\widehat{D_1}\) là góc ngoài tại đỉnh D của tứ giác ABCD
\(\Rightarrow\widehat{D}+\widehat{D_1}=180^o\) (kề bù)
\(\Rightarrow\widehat{D_1}=180^o-107^o\)
\(\Rightarrow\widehat{D_1}=73^o\)
Cho tứ giác ABCD. Tìm góc \(\widehat{A},\widehat{C},\widehat{D}\) biết \(\widehat{B}=60^0\) và \(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{4}{3}\widehat{C}\)
\(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{3}{2}.60^0=90^0\)
\(\widehat{D}=\dfrac{4}{3}\widehat{C}\Rightarrow\widehat{C}=\dfrac{3}{4}\widehat{D}=\dfrac{3}{4}.90^0=67,5^0\)
\(\widehat{A}=360^0-\widehat{B}-\widehat{C}-\widehat{D}=360^0-60^0-90^0-67,5^0=142,5^0\)