Tìm x, y ,z biết :
\(\frac{x}{y}\)=\(\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
Tìm x , y , z , biết :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và x+y-z = 7
=>\(\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
=>\(\frac{x}{15}=1=>x=15\)
=>\(\frac{y}{20}=1=>y=20\)
=>\(\frac{z}{28}=1=>z=28\)
vậy:\(x=15;y=20;z=28\)
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\frac{x}{15}=1\Rightarrow x=1.15\Rightarrow x=15\)
\(\frac{y}{20}=1\Rightarrow y=1.20\Rightarrow y=20\)
\(\frac{z}{28}=1\Rightarrow z=1.28\Rightarrow z=28\)
Vậy x = 15
y = 20
z = 28
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\Rightarrow\begin{cases}x=15\\y=20\\z=28\end{cases}\)
bài 1 tìm x,y,z
a,\(\frac{x}{10}\)=\(\frac{y}{15}\),x=\(\frac{7}{2}\)và x+2y-3z=20
b,2x=3y,49=57 và 4x-3y+5z=7
c,\(\frac{2x}{3}\)=\(\frac{3y}{4}\)=\(\frac{47}{5}\)và x+y+z=49
2 tìm x trong các tỉ lệ thức sau
a, \(\frac{x-3}{x+5}=\frac{5}{7}\)
b,\(\frac{7}{x-1}\)\(=\frac{x+1}{9}\)
c \(\frac{x+4}{20}=\frac{5}{x+4}\)
d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 3: tìm các số x,y,z
a,\(\frac{x}{y}=\frac{7}{10}=\frac{z}{9}\)
b,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\) và x-y+z=-15
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
bài 4 tìm các số x,y,z
a,5x=8y=20z và x-y-z=3
b ,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và -x+y+z=-120
bài 5 tìm x,y,z biết
và xyz=20
bài 6 tìm x,y,z biết
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2 + y2 -z2 =585
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x,y,z biết
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
\(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\Leftrightarrow\frac{x}{14}=\frac{y}{40}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{40}=\frac{z}{64}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{40}=\frac{z}{64}=\frac{2x+5y-2z}{2.14+5.40-2.64}=\frac{100}{100}=1\)
\(\Leftrightarrow x=14\)
\(y=40\)
\(z=64\)
\(\frac{x}{y}=\frac{7}{20}=>\frac{x}{14}=\frac{y}{40}\)(1)
\(\frac{y}{z}=\frac{5}{8}=>\frac{y}{40}=\frac{z}{64}\)(2)
Từ (1) và (2) \(=>\frac{x}{14}=\frac{y}{40}=\frac{z}{64}\)
Áp dụng t/c của dãy tỉ số bằng nhau
\(\frac{x}{14}=\frac{y}{40}=\frac{z}{64}=\frac{2x+5y-2z}{28+200-128}=\frac{100}{100}=1\)
\(=>\hept{\begin{cases}\frac{x}{14}=1=>x=14\\\frac{y}{40}=1=>y=40\\\frac{z}{64}=1=>z=64\end{cases}}\)
Vậy ...
Tìm x,y thuộc Z biết \(\frac{3+x}{7+x}=\frac{3}{7}\)và x+y=20
1.Tìm x,y,z, biết :\(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\) và x-y-z = 78
2.Tìm x trong các tỉ lệ thức sau:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
3. Tìm các số x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x - 3y - 4z = 62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x - y + z = -15
c) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x + 5y + 2z = 100
d) 5x = 8y = 20z và x - y - z = 3
Giúp với ạ, đang cần gấp
Tìm các số x,y,z, biết:
a,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}vàx-y+z=-15\)
b,\(\frac{x}{4}=\frac{9}{3}=\frac{z}{9}vàx-3y+4z=62\)
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}và2x+5y-2z=100\)
Theo đề ta có:
\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{x}{9}=\frac{y}{7};\frac{y}{7}=\frac{z}{3}\)
Hay: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\frac{x}{9}=-3\)
\(\frac{y}{7}=-3\)
\(\frac{z}{3}=-3\)
=> x = -27
y = -21
x= -9
Bạn kiểm tra lại thử giúp mình nha! mấy bài sau bạn làm tương tự, nhớ tick đúng cho mình nha! Cảm ơn bạn!
Theo đề ra ta cs
\(+,\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\)(1)
\(+,\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-3\\\frac{y}{7}=-3\\\frac{z}{3}=-3\end{cases}\Rightarrow\hept{\begin{cases}x=-27\\y=-21\\z=-9\end{cases}}}\)
Cho ba số x,y,z sao cho \(\frac{x}{3} = \frac{y}{4};\frac{y}{5} = \frac{z}{6}\)
a) Chứng minh: \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\)
b) Tìm ba số x,y,z biết x – y + z = - 76
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Bài 1: Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị biểu thức \(A=\frac{x-y+z}{x+2y-z}\)
Bài 2: Tìm x và y biết rằng: (x-0,2)^10+(y+3,1)^20=0
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405