=>\(\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
=>\(\frac{x}{15}=1=>x=15\)
=>\(\frac{y}{20}=1=>y=20\)
=>\(\frac{z}{28}=1=>z=28\)
vậy:\(x=15;y=20;z=28\)
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\frac{x}{15}=1\Rightarrow x=1.15\Rightarrow x=15\)
\(\frac{y}{20}=1\Rightarrow y=1.20\Rightarrow y=20\)
\(\frac{z}{28}=1\Rightarrow z=1.28\Rightarrow z=28\)
Vậy x = 15
y = 20
z = 28
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\Rightarrow\begin{cases}x=15\\y=20\\z=28\end{cases}\)
Giải:
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
+) \(\frac{x}{15}=1\Rightarrow x=15\)
+) \(\frac{y}{20}=1\Rightarrow y=20\)
+) \(\frac{z}{28}=1\Rightarrow z=28\)
Vậy x = 15; y = 20; z = 28
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\Rightarrow\begin{cases}\frac{x}{15}=1\\\frac{y}{20}=1\\\frac{z}{28}=1\end{cases}\)\(\Rightarrow\begin{cases}x=15\\y=20\\z=28\end{cases}\)
Vậy x=15;y=20;z=28