Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Tuấn Phạm
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Dũng Lê Trí
Xem chi tiết
Trương Minh Trọng
27 tháng 6 2017 lúc 10:07

Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:

\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)

Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:

\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)

Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)

Dũng Lê Trí
27 tháng 6 2017 lúc 10:34

Hay ghê :)

Trương Minh Trọng
27 tháng 6 2017 lúc 11:01

Cảm ơn bạn quá khen!

ghdoes
Xem chi tiết
Hồng Phúc
12 tháng 12 2020 lúc 23:07

Đề đúng chưa v

BHQV
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 11:29

f(x) chia hết cho x^2+3x-1

=>(2a-b)=0 và 3b+a=0

=>a=b=0

Nguyễn Ngọc An Hy
Xem chi tiết
tth_new
8 tháng 3 2019 lúc 9:54

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

tth_new
8 tháng 3 2019 lúc 9:54

1.b) Y chang câu a!

tth_new
8 tháng 3 2019 lúc 10:03

Tớ nêu hướng giải bài 3 thôi nhé:

Bài toán: Cho đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) 

Chứng minh tổng các hệ số của đa thức f(x) là giá trị của đa thức khi x = 1

                                  Lời giải:

Thật vậy,thay x = 1 vào:

\(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) (đúng bằng tổng các hệ số của đa thức)

Vậy tổng các hệ số của 1 đa thức chính là giá trị của đa thức đó khi x = 1 (đpcm)

Đinh Hoàng Nhất Quyên
Xem chi tiết
Trần Công Nhật
Xem chi tiết
0o0 Nhok kawaii 0o0
Xem chi tiết
Trần Thanh Phương
21 tháng 4 2019 lúc 11:09

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....