tính góc giữa các cặp đường thẳng sau : a,(d1)5x+3y-1=0;(d2):x+2y+2=0
Góc giữa 2 đường thẳng d1:x+3y-3=0 và d2: x+√3y +2=0
\(d_1\) nhận \(\overrightarrow{n_1}=\left(1;3\right)\) là 1 vtpt
\(d_2\) nhận \(\overrightarrow{n_2}=\left(1;\sqrt{3}\right)\) là 1 vtpt
Gọi \(\alpha\) là góc giữa d1 và d2
\(\Rightarrow cos\alpha=\left|cos\left(\overrightarrow{n_1};\overrightarrow{n_2}\right)\right|=\dfrac{\left|1.1+3.\sqrt{3}\right|}{\sqrt{1^2+3^2}.\sqrt{1^2+3}}=\dfrac{3\sqrt{3}+1}{2\sqrt{10}}\)
\(\Rightarrow\alpha\approx11^034'\)
Cho điểm A(1; 3) và hai đường thẳng d 1 : 2 x − 3 y + 4 = 0 , d 2 : 3 x + y = 0 . Số đường thẳng qua A và tạo với d 1 , d 2 các góc bằng nhau là
A.1
B.2
C.4
D.Vô số
ĐÁP ÁN B
Đường thẳng qua A và tạo với d1d2 các góc bằng nhau khi vuông góc với phân giác của góc tạo bởi d1d2.
Do vậy số lượng đường thẳng cần tìm là 2.
Tìm số đo của góc giữa hai đường thẳng d1 và d2 lần lượt có phương trình: d1: 4x – 2y + 6 = 0 và d2: x – 3y + 1 = 0
Với d1: 4x – 2y + 6 = 0 có vecto pháp tuyến là: n1→(4;-2)
và d2: x – 3y + 1 = 0 có vecto pháp tuyến là: n2→(1;-3) ; ta có :
Lập phương trình đường phân giác của các góc giữa hai đường thẳng sau
a) (d1) : 2x+4y+7=0 và (d2) : 5x+3y+7=0
b) (d1) : -3x+4y+8=0 và (d2) : x-y+6 = 0
Hai câu tương tự, mình làm câu a:
Gọi \(M\left(x;y\right)\) là điểm thuộc đường phân giác của 2 đường thẳng
Theo tính chất phân giác ta có:
\(d\left(M;d_1\right)=d\left(M;d_2\right)\)
\(\Leftrightarrow\frac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\frac{\left|5x+3y+7\right|}{\sqrt{5^2+3^2}}\)
\(\Leftrightarrow\sqrt{34}\left|2x+4y+7\right|=2\sqrt{5}\left|5x+3y+7\right|\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{34}\left(2x+4y+7\right)=2\sqrt{5}\left(5x+3y+7\right)\\\sqrt{34}\left(2x+4y+7\right)=-2\sqrt{5}\left(5x+3y+7\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(2\sqrt{34}-10\sqrt{5}\right)x+\left(4\sqrt{34}-6\sqrt{5}\right)y+7\sqrt{34}-14\sqrt{5}=0\\\left(2\sqrt{34}+10\sqrt{5}\right)x+\left(4\sqrt{34}+6\sqrt{5}\right)y+7\sqrt{34}+14\sqrt{5}=0\end{matrix}\right.\)
Cho d1:2x+5y+4=0 và d2:5x-2y+6=0.Số đo của góc giữa 2 đường thẳng d1 và d2 là? A.90° B.60° C.45° D.30°
Quỹ tích các điểm cách đều hai đường thẳng d1: 5x-12y+4=0, d2: 4x-3y+2=0 là:
A. 9x + 7y + 2 = 0 và 7x – 9y = 0
B. 9x – 7y + 2 = 0 và 77x – 99y + 46 = 0
C. 9x – 7y + 2 = 0 và 7x + 9y = 0
D. 9x + 7y + 2 = 0 và 77x – 99y + 46 = 0
Quỹ tích các điểm cách đều hai đường thẳng d1: 5x-12y+4=0, d2: 4x-3y+2=0 là hai đường phân giác ∆1,2 của chúng
Phương trình ∆1 là
5 x − 12 y + 4 5 2 + ( − 12 ) 2 = 4 x − 3 y + 2 4 2 + ( − 3 ) 2 ⇔ 5 x − 12 y + 4 13 = 4 x − 3 y + 2 5 ⇔ 5 ( 5 x − 12 y + 4 ) = 13 ( 4 x − 3 y + 2 ) ⇔ 25 x − 60 y + 20 = 52 x − 39 y + 26 ⇔ − 27 x − 21 y − 6 = 0 ⇔ 9 x + 7 y + 2 = 0
Phương trình ∆2 là
5 x − 12 y + 4 5 2 + ( − 12 ) 2 = − 4 x − 3 y + 2 4 2 + ( − 3 ) 2 ⇔ 5 x − 12 y + 4 13 = − 4 x − 3 y + 2 5 ⇔ 5 ( 5 x − 12 y + 4 ) = − 13 ( 4 x − 3 y + 2 ) ⇔ 25 x − 60 y + 20 = − 52 x + 39 y − 26 ⇔ 77 x − 99 y + 46 = 0
Đáp án D
Cho ba đường thẳng d 1 : 3 x − 4 y + 1 = 0 , d 2 : 5 x + 3 y − 1 = 0 , d 3 : x + y + 6 = 0 . Số điểm M cách đều ba đường thẳng trên là
A.1
B. 2
C.3
D. 4
Do các đường thẳng đôi một cắt nhau tại các điểm A, B, C nên các điểm cách đều các cạnh gồm tâm đường tròn nội tiếp và ba tâm đường tròn bàng tiếp.
Vậy có tất cả 4 điểm M cách đều ba đường thẳng đã cho.
đáp án D
Lập phương trình của đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: x + 3y – 1 =0 d2: x – 3y - 5= 0 và vuông góc với đường thẳng d3: 2x - y + 7 = 0.
A. 3x + 6y - 5=0.
B. 6x + 12y - 5 = 0.
C. 6x+ 12y + 10 = 0.
D. x +2y + 10 = 0.
Tính góc giữa hai đường thẳng ∆ : x - 3 y + 2 = 0 và ∆ ' : x + 3 y - 1 = 0
A. 90 0
B. 120 0
C. 60 0
D. 30 0