Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Duy Dai
Xem chi tiết
Lê Thị Hải Anh
Xem chi tiết
alibaba nguyễn
12 tháng 11 2018 lúc 14:15

\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Lê Song Phương
Xem chi tiết
Tô Hoàng Long
10 tháng 2 2023 lúc 19:23

không biết :))))

Trang Huyen Trinh
Xem chi tiết
Trần Thị Loan
5 tháng 4 2015 lúc 23:47

Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}1\)

Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)

=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3

Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)

mà y >2 => y = 3 hoặc 4 

y = 3 => z = 6;

y = 4 => z = 4

nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)

theo đề bài x<= y nên y = 3 => z = 3

Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)

Đỗ Thành Vinh
9 tháng 5 2019 lúc 12:51

x=1;y=9;z=8

Kiểm tra lại mà xem.

Nguyễn An
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 12 2021 lúc 7:29

\(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\ge0\\ \Leftrightarrow1-x\ge0\Leftrightarrow0< x\le1\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)+\left(y+z\right)^2\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)\le\left(y+z\right)^2\left(1-x-1\right)=-x\left(y+z\right)^2\\ \Leftrightarrow x-2\left(y+z\right)\le-\left(y+z\right)^2\\ \Leftrightarrow x\le\left(y+z\right)\left[2-\left(y+z\right)\right]\)

Đặt \(2-\left(y+z\right)=t\)

\(P=x\left(1-y\right)\left(1-z\right)\le x\left(\dfrac{1-y+1-z}{2}\right)^2=\dfrac{x\left[2-\left(y+z\right)\right]^2}{4}\\ \Leftrightarrow4P\le x\left[2-\left(y+z\right)\right]^2\le\left(y+z\right)\left[2-\left(y+z\right)\right]^3\\ \Leftrightarrow4P\le t^3\left(2-t\right)=\dfrac{27}{16}-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\)

Mà \(-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\le0\Leftrightarrow4P\le\dfrac{27}{16}\Leftrightarrow P\le\dfrac{27}{64}\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{4};y=z=\dfrac{1}{4}\)

Nguyen Duy Dai
Xem chi tiết
Upin & Ipin
22 tháng 8 2020 lúc 9:54

Dat \(\left(a,b,c\right)=\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\left(a,b,c>0,abc=1\right)\)

Ta co \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{3}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\left(1\right)\)

BDT phu \(1+\frac{3}{ab+bc+ca}\ge\frac{6}{a+b+c}\left(2\right)\)

Do (1) nen (2) tuong duong voi

\(1+\frac{9}{\left(a+b+c\right)^2}\ge\frac{6}{a+b+c}\Leftrightarrow\left(1-\frac{3}{a+b+c}\right)^2\ge0\left(dung\right)\)

Suy ra (2) duoc chung minh

Do \(abc=1\Rightarrow\hept{\begin{cases}ab=\frac{1}{xy}=\frac{xyz}{xy}=z\\bc=x\\ca=y\end{cases}}\)

nen (2) tuong duong \(1+\frac{3}{x+y+z}\ge\frac{6}{xy+yz+zx}\)

=> \(\frac{1}{x+y+z}\ge\frac{1}{3}\left(\frac{6}{x+y+z}-1\right)=\frac{2}{x+y+z}-\frac{1}{3}\)

Suy ra \(P\ge\frac{2}{x+y+z}-\frac{1}{3}-\frac{2}{x+y+z}=-\frac{1}{3}\)

Dau = xay ra khi x=y=z=1

Khách vãng lai đã xóa
Phương Hà
Xem chi tiết
Fire Sky
Xem chi tiết
Love Phương Forever
1 tháng 5 2019 lúc 15:52

Quẩy lên các em êii

Phùng Minh Quân
1 tháng 5 2019 lúc 16:04

\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)

\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)

\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)

\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

...