Cho tam giác ABC vuông tại A biết AB=3cm, AC=4cm, Gọi AH là đường cao tính S tam giác AHC
Cho tam giác ABC vuông tại A, đường cao AH, H thuộc BC. AB=3cm, AC=4cm.
a/ C/m tam giác AHC đồng dạng với tam giác BHA
b/ Tính tỉ số diện tích của hai tam giác AHC và tam giác BHA
c/ Gọi M là trung điểm của BH và N là trung điểm của AH. C/m CN vuông góc với AM
cho tam giác ABC cân tại A . đường cao AH(H thuộc BC)
a, chứng minh tam giác AHB=tam giác AHC
b, biết AH=4cm;HC=3cm. tính AC
c, trên tia đối của tia HAlaays điểm M sao cho AH=HM . chứng mjnh AB//CM
d, gọi G là trọng tâm của tam giác ABC , chứng minh (CG<AB+AC):3
Cho tam giác vuông tại A , đường cao AH .Gọi M là trung điểm của BC . Biết AB=3cm , AC=4cm . Tính độ dài đường cao AH và diện tích tam giác ABM
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
Vì M là trung điểm BC nên chia tam giác ABC ra 2 tam giác ABM và ACM có diện tích bằng nhau và cùng bằng một nửa diện tích ABC
Mà \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
Vậy \(S_{ABM}=\dfrac{1}{2}S_{ABC}=3\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài đường cao AH, tính c o s A C B ^ và chu vi tam giác ABH.
A. AH = 2,8 cm; c o s A C B ^ = 3 5
B. AH = 2,4 cm; c o s A C B ^ = 4 5
C. AH = 2,5 cm; c o s A C B ^ = 3 4
D. AH = 1,8 cm; c o s A C B ^ = 2 3
Áp dụng định lý Pytago trong ∆ ABC vuông tại A ta có:
Áp dụng hệ thức lượng trong ∆ ABC vuông tại A có đường cao AH ta có:
Đáp án cần chọn là: B
Cho tam giác ABC vuông tại A , đường cao AH (H thuộc BC). AB = 3cm, AC = 4cm.
a, C/minh: Tam giác AHC đồng dạng tam giác với tam giác BHA
b, Tính tỉ số diện tích của hai tam giác AHC và tam giác BHA
c, Gọi M là trung điểm của BH và N là trung điểm của AH . C/minh: \(CN\perp AM\)
CẦN GẤP Ạ
Cho tam giác ABC nhọn (AB < AC) đường cao AH (H thuộc BC) kẻ HK vuông góc với AC (K thuộc AC)
a/ Chứng minh tam giác AHC đồng dạng với tam giác HKC
b/ Chứng minh KH^2=AK.AC
c/ Biết AH=3cm, HC=4cm. Tính diện tích tam giác AHC/diện tích tam giác HKC
a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔHKC
b: Xet ΔHAC vuông tại H có HK là đường cao
nên HK^2=AK*KC
c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
CK=4^2/5=3,2cm
=>AK=1,8cm
=>HK=2,4cm
\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)
CẦN GẤP Ạ
Cho tam giác ABC nhọn (AB < AC) đường cao AH (H thuộc BC) kẻ HK vuông góc với AC (K thuộc AC)
a/ Chứng minh tam giác AHC đồng dạng với tam giác HKC
b/ Chứng minh KH^2=AK.AC
c/ Biết AH=3cm, HC=4cm. Tính diện tích tam giác AHC/diện tích tam giác HKC
a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔHKC
b: Xet ΔHAC vuông tại H có HK là đường cao
nên HK^2=AK*KC
c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
CK=4^2/5=3,2cm
=>AK=1,8cm
=>HK=2,4cm
\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=3cm, AC=4cm. Tính AH, BH
xét △ABC vuông tại A
BC2= AB2+ AC2
BC2= 32+ 42
BC2= 25
BC=\(\sqrt{25}=5\)
Xét △ABC vuông tại A, có AH là đường cao
AB.AC=AH.BC
3.4=AH.5
AH= \(\dfrac{3.4}{5}=2,4\)
Xét △ ABC vuông tại A
AB2= BH.BC
32= BH. 5
BH= 1,8
tham khảo ở đây
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-biet-ab-3cm-ac-4cm-tinh-do-dai-cac-canh-bc-ah-va-so-do-goc-acb-lam-tron-den-do.1482642245232
tính BH
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại ta có
AB2=BC.BH \(\Leftrightarrow\) BH=AB2/BC \(\Leftrightarrow\) BH=9/5
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2