Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trân Thuy Quynh
Xem chi tiết
an
27 tháng 12 2017 lúc 11:45

ta co :a + b+c=0

=>(a+b+c)^3= 0

<=>  a^3 + b^3 + c^3 + 3a^2b+3a^2c + 3b^2a+3b^2c + 3c^2a+3c^2b + 6abc =0

<=>(a^3+b^3+c^3) + (3a^2b+3a^2c+3abc ) +(3b^2a+3b^c +3abc) +(3c^2a+3c^b +3abc )  - 3abc=0

<=>(a^3+b^3+c^3) + 3a(ab+ac+bc) + 3b(ab+bc+ac) + 3c(ac+bc+ab) - 3abc=0

<=>(a^3+b^3+c^3) +3(ab+bc+ac)(a+b+c) -3abc=0

<=>(a^3+b^3+c^3) +3(ab+bc+ac).0 - 3abc =0 

<=> a^3+b^3+c^3 -3abc=0

=>a^3+b^3+c^3 =3abc (dpcm)

Phúc
27 tháng 12 2017 lúc 12:43

Ta co

\(a^3+b^3+c^3-3abc\)

=\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)

Ma a+b+c=3

=>\(a^3+b^3+c^3-3abc=0\)

=>\(a^3+b^3+c^3=3abc\)(\(ĐPCM\))

Phúc
27 tháng 12 2017 lúc 12:44

a+b+c=0 nhe minh ghi nham =3

Atsushi Nakajima
Xem chi tiết
Xyz OLM
7 tháng 7 2021 lúc 12:53

Ta có a3 + b3 + c3 = 3abc

<=> (a + b)3  - 3ab(a + b) + c3 = 3abc

<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0 

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Khi a2 + b2 + c2 - ab - ac - bc = 0 

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0 

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0 

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)

Vậy a + b + c = 0

Khách vãng lai đã xóa
Hockaido
Xem chi tiết
Đinh thị hồng xuyến
Xem chi tiết
Đinh thị hồng xuyến
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Hoàng Lê Bảo Ngọc
27 tháng 5 2016 lúc 21:10

\(a^3+b^3+c^3=3abc\)\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)

Vì a,b,c > 0 nên a+b+c > 0

Do đó : \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow}a=b=c\)

Võ Đông Anh Tuấn
27 tháng 5 2016 lúc 21:04

1) có: a^3 + b^3 + c^3 - 3abc = 0
((a + b)3 + c^3( - 3ab(a + b) - 3abc = 0
<=>(a + b + c)((a + b)2 - (a + b).c + c2( - 3ab(a + b + c) = 0
<=>(a + b + c) (a2 + b2 + c2- ac - bc - ab( = 0

Từ đây cho nhận xét:
+ Nếu a + b + c = 0 có a3 + b3 + c3 = 3abc (I)
a + b + c = 0 
+ Nếu a^3 + b^3 + c^3 = 3abc thì 
a = b = c

Hoàng Phúc
27 tháng 5 2016 lúc 21:05

ak thôi CHTT có rồi,mn khỏi phải giải

Võ Thị Ngọc Tú
Xem chi tiết
Lưu Đức Mạnh
Xem chi tiết
Đặng Tuấn Anh
23 tháng 7 2017 lúc 18:25

Ta dùng cách chứng minh ngược :

Nếu \(a=b=c\) thì \(a^3=b^3=c^3=abc\)

\(\Rightarrow a^3+a^3+a^3=abc+abc+abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Bui Thi Thu Phuong
Xem chi tiết